On the maximum connective eccentricity index among k-connected graphs

被引:5
作者
Hayat, Fazal [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
关键词
CEI; connectivity; diameter; minimum degree; independence number; TOPOLOGICAL DESCRIPTOR;
D O I
10.1142/S1793830921500026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The connective eccentricity index (CEI for short) of a graph G is defined as xi(ce)(G) = Sigma(v is an element of V (G))d(G)(v)/epsilon(G)(v), where d(G)(v) is the degree of v and epsilon(G)(v) is the eccentricity of v in G. In this paper, we characterize the unique graphs with maximum CEI from three classes of graphs: the n-vertex graphs with fixed connectivity and diameter, the n-vertex graphs with fixed connectivity and independence number, and the n-vertex graphs with fixed connectivity and minimum degree.
引用
收藏
页数:11
相关论文
共 12 条
[1]   Connective eccentricity index: A novel topological descriptor for predicting biological activity [J].
Gupta, S ;
Singh, A ;
Madan, AK .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2000, 18 (01) :18-25
[2]  
Ilic A, 2011, MATCH-COMMUN MATH CO, V65, P731
[3]   On the maximal connective eccentricity index of bipartite graphs with some given parameters [J].
Li, Hongshuai ;
Li, Shuchao ;
Zhang, Huihui .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 454 (02) :453-467
[4]   On the extremal total reciprocal edge-eccentricity of trees [J].
Li, Shuchao ;
Zhao, Lifang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (01) :587-602
[5]   On the eccentric connectivity index of a graph [J].
Morgan, M. J. ;
Mukwembi, S. ;
Swart, H. C. .
DISCRETE MATHEMATICS, 2011, 311 (13) :1229-1234
[6]   Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies [J].
Sharma, V ;
Goswami, R ;
Madan, AK .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1997, 37 (02) :273-282
[7]   The extremal values of connective eccentricity index for trees and unicyclic graphs [J].
Tang, Lang ;
Wang, Xia ;
Liu, Weijun ;
Feng, Lihua .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (03) :437-453
[8]   Some extremal results on the connective eccentricity index of graphs [J].
Xu, Kexiang ;
Das, Kinkar Ch. ;
Liu, Haiqiong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (02) :803-817
[9]   On the connective eccentricity index of trees and unicyclic graphs with given diameter [J].
Yu, Guihai ;
Qu, Hui ;
Tang, Lang ;
Feng, Lihua .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (02) :1776-1786
[10]  
Yu GH, 2013, MATCH-COMMUN MATH CO, V69, P611