Existence and regularity of law density of a pair (diffusion, first component running maximum)

被引:2
作者
Coutin, Laure [1 ]
Pontier, Monique [2 ]
机构
[1] IMT, UMR 5219, Toulouse, France
[2] Univ Paul Sabatier, IMT, F-31062 Toulouse, France
关键词
Running supremum process; Joint law density; Malliavin calculus; Regularity of the density; TIME;
D O I
10.1016/j.spl.2019.05.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X be a continuous d-dimensional diffusion process and M the running supremum of the first component. We show that, for all t > 0, the law of the (d+1) random vector (M-t, X-t) admits a density with respect to the Lebesgue measure using Malliavin's calculus. In case d = 1 we prove the regularity of this density. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:130 / 138
页数:9
相关论文
共 17 条
[1]   Representations of the first hitting time density of an Ornstein-Uhlenbeck process [J].
Alili, A ;
Patie, P ;
Pedersen, JL .
STOCHASTIC MODELS, 2005, 21 (04) :967-980
[2]   On the regularity of the distribution of the maximum of one-parameter Gaussian processes [J].
Azaïs, JM ;
Wschebor, M .
PROBABILITY THEORY AND RELATED FIELDS, 2001, 119 (01) :70-98
[3]   Risk assessment using suprema data [J].
Blanchet-Scalliet, Christophette ;
Dorobantu, Diana ;
Gay, Laura ;
Maume-Deschamps, Veronique ;
Ribereau, Pierre .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2018, 32 (10) :2839-2848
[4]  
Coutin L, 2018, APPL PROBAB, V55
[5]  
Coutin L, 2017, PDE JOINT LAW PAIR C
[6]   First passage time law for some Levy processes with compound Poisson: Existence of a density [J].
Coutin, Laure ;
Dorobantu, Diana .
BERNOULLI, 2011, 17 (04) :1127-1135
[7]   Overshoots and undershoots of Levy processes [J].
Doney, RA ;
Kyprianou, AE .
ANNALS OF APPLIED PROBABILITY, 2006, 16 (01) :91-106
[8]   Smoothness of the Distribution of the Supremum of a Multi-dimensional Diffusion Process [J].
Hayashi, Masafumi ;
Kohatsu-Higa, Arturo .
POTENTIAL ANALYSIS, 2013, 38 (01) :57-77
[9]   THE FIRST-PASSAGE TIME OF THE BROWNIAN MOTION TO A CURVED BOUNDARY: AN ALGORITHMIC APPROACH [J].
Herrmann, S. ;
Tanre, E. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01) :A196-A215
[10]  
Herrmann S, 2018, EXACT SIMULATI UNPUB