Maps Preserving the Numerical Radius Distance Between C*-Algebras

被引:0
作者
Bourhim, Abdellatif [1 ]
Mabrouk, Mohamed [2 ,3 ]
机构
[1] Syracuse Univ, Dept Math, 215 Carnegie Bldg, Syracuse, NY 13244 USA
[2] Umm Al Qura Univ, Fac Appl Sci, Dept Math, Mecca 21955, Saudi Arabia
[3] Univ Sfax, Fac Sci Sfax, Dept Math, Sfax, Tunisia
关键词
C*-algebras; Isometry; Numerical range; Numerical radius; Numerical range and radius preservers; ISOMETRIES; OPERATORS;
D O I
10.1007/s11785-019-00894-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A and B be unital C *-algebras, and let v(a) be the numerical radius of any element a. A. We show that if a map T from A ontoB satisfies v(T (a)-T (b)) = v(a -b), (a, b. A), then T (1) -T (0) is a unitary central element in B. This shows that the characterization of Bai, Hou and Xu for the numerical radius distance preservers onC *-algebras can be obtained without the extra condition that T (1)-T (0) is in the center of B.
引用
收藏
页码:2371 / 2380
页数:10
相关论文
共 16 条
[1]   Maps preserving numerical radius distance on C*-algebras [J].
Bai, ZF ;
Hou, JC ;
Xu, ZB .
STUDIA MATHEMATICA, 2004, 162 (02) :97-104
[2]   Numerical radius distance-preserving maps on B(H) [J].
Bai, ZF ;
Hou, JC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (05) :1453-1461
[3]   Numerical radius and product of elements in C*-algebras [J].
Bourhim, Abdellatif ;
Mabrouk, Mohamed .
LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (06) :1108-1116
[4]   Isometries of a generalized numerical radius [J].
Cardoso Goncalves, Maria Inez ;
Sourour, Ahmed Ramzi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (07) :1478-1488
[5]   Numerical radius preserving operators on C*-algebras [J].
Chan, JT .
ARCHIV DER MATHEMATIK, 1998, 70 (06) :486-488
[6]   c-Numerical radius isometries on matrix algebras and triangular matrix algebras [J].
Chan, Kong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 466 :160-181
[7]  
Charzynski Z., 1953, STUD MATH, V13, P94, DOI DOI 10.4064/SM-13-1-94-121
[8]   Linear operators preserving generalized numerical ranges and radii on certain triangular algebras of matrices [J].
Cheung, WS ;
Li, CK .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2001, 44 (03) :270-281
[9]   Non-linear numerical radius isometries on atomic nest algebras and diagonal algebras [J].
Cui, JL ;
Hou, JC .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 206 (02) :414-448
[10]  
Espaces vectoriels topologiques N, 1981, ESPACES VECTORIELS T