Group gradings on the Lie algebra of upper triangular matrices

被引:11
作者
Koshlukov, Plamen [1 ]
Yukihide, Felipe [1 ]
机构
[1] Univ Estadual Campinas, Dept Math, 651 Sergio Buarque Holamda, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Gradings on Lie algebras; Upper triangular matrices; Elementary gradings; Group graded algebras; IDENTITIES; JORDAN;
D O I
10.1016/j.jalgebra.2016.12.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The algebras UTn, of the n x n upper triangular matrices over a field K are of significant importance in the theory of algebras with polynomial identities. Group gradings on algebras appear in various areas and provide an indispensable tool in the study of the algebraic and combinatorial properties of the algebras in question. We classify the group gradings on the Lie algebra UTn(-).It was proved by Valenti and Zaicev in 2007 that every group grading on the associative algebra UT,, is isomorphic to an elementary grading. The elementary gradings on UTn(-) are also well understood, see [6]. It follows from our results that there are nonelementary gradings on UTn(-)). Thus the gradings on the Lie algebra UT4) are much more intricate than those in the associative case. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:294 / 311
页数:18
相关论文
共 13 条
[1]  
Bahturin Y., 2012, SERDICA MATH J, V38, P1
[2]  
BAHTURIN Y. A., 2003, LECT NOTES PURE APPL, V235, P101
[3]   Gradings on simple Jordan and Lie algebras [J].
Bahturin, YA ;
Shestakov, IP ;
Zaicev, MV .
JOURNAL OF ALGEBRA, 2005, 283 (02) :849-868
[4]   Group gradings on matrix algebras [J].
Bahturin, YA ;
Zaicev, MV .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (04) :499-508
[5]   Group gradings on associative algebras [J].
Bahturin, YA ;
Sehgal, SK ;
Zaicev, MV .
JOURNAL OF ALGEBRA, 2001, 241 (02) :677-698
[6]   Gradings on the algebra of upper triangular matrices and their graded identities [J].
Di Vincenzo, OM ;
Koshlukov, P ;
Valenti, A .
JOURNAL OF ALGEBRA, 2004, 275 (02) :550-566
[7]   On Z2-graded polynomial identities of the Grassmann algebra [J].
Di Vincenzo, Onofrio M. ;
Tomaz da Silva, Viviane Ribeiro .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (1-2) :56-72
[8]   AUTOMORPHISMS OF THE LIE-ALGEBRA OF UPPER-TRIANGULAR MATRICES OVER A CONNECTED COMMUTATIVE RING [J].
DOKOVIC, DZ .
JOURNAL OF ALGEBRA, 1994, 170 (01) :101-110
[9]  
Elduque A., 2013, MATH SURVEYS MONOGRA, V189
[10]   Elementary gradings on the Lie algebra UTn(-) [J].
Koshlukov, Plamen ;
Yukihide, Felipe .
JOURNAL OF ALGEBRA, 2017, 473 :66-79