Almost automorphic solutions of evolution equations

被引:71
作者
Diagana, T
Nguerekata, G
Nguyen, VM
机构
[1] Howard Univ, Dept Math, Washington, DC 20059 USA
[2] Morgan State Univ, Dept Math, Baltimore, MD 21251 USA
[3] Hanoi Univ Sci, Dept Math, Hanoi, Vietnam
关键词
D O I
10.1090/S0002-9939-04-07571-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence of almost automorphic mild solutions to equations of the form (*) (u) over dot( t) = Au( t) + f(t); where A generates a holomorphic semigroup and f is an almost automorphic function. Since almost automorphic functions may not be uniformly continuous, we introduce the notion of the uniform spectrum of a function. By modifying the method of sums of commuting operators used in previous works for the case of bounded uniformly continuous solutions, we obtain sufficient conditions for the existence of almost automorphic mild solutions to (*) in terms of the imaginary spectrum of A and the uniform spectrum of f.
引用
收藏
页码:3289 / 3298
页数:10
相关论文
共 28 条
[1]  
[Anonymous], 2001, ALMOST AUTOMORPHIC A
[2]  
[Anonymous], 1983, APPL MATH SCI, DOI DOI 10.1007/978-1-4612-5561-1
[3]   SPECTRAL PROPERTIES OF THE OPERATOR EQUATION AX+XB=Y [J].
ARENDT, W ;
RABIGER, F ;
SOUROUR, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1994, 45 (178) :133-149
[4]  
Arendt W., 2001, MONOGRAPHS MATH, V96
[5]   Harmonic analysis and asymptotic behavior solutions to the abstract Cauchy problem [J].
Basit, B .
SEMIGROUP FORUM, 1997, 54 (01) :58-74
[6]   Almost periodicity of mild solutions of inhomogeneous periodic cauchy problems [J].
Batty, CJK ;
Hutter, W ;
Räbiger, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (02) :309-327
[7]  
DAPRATO G, 1975, J MATH PURE APPL, V54, P305
[8]  
DAVIES EB, 1980, 1 PARAMETER SEMIGROU
[9]  
DIAGANA T, 2003, FAR E J MATH SCI, V8, P313
[10]  
ENGEL KJ, 1999, 1 PARAMETER SEMIGROU