The Interlayer Method: A Universal Tool for Energy Level Alignment Tuning at Inorganic/Organic Semiconductor Heterojunctions

被引:20
作者
Schultz, Thorsten [1 ,2 ,3 ]
Lungwitz, Dominique [1 ,2 ]
Longhi, Elena [4 ,5 ]
Barlow, Stephen [4 ,5 ]
Marder, Seth R. [4 ,5 ]
Koch, Norbert [1 ,2 ,3 ]
机构
[1] Humboldt Univ, Inst Phys, Berlin, Germany
[2] Humboldt Univ, IRIS Adlershof, Berlin, Germany
[3] Helmholtz Zentrum Mat & Energie GmbH, Berlin, Germany
[4] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[5] Georgia Inst Technol, Ctr Organ Photon & Elect, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
energy level alignment; heterojunctions; interlayers; photoelectron spectroscopy; semiconductors; WORK-FUNCTION; METAL; REDUCTION; INTERFACE; MOLECULES; SURFACES; DIPOLE; STATE; GAP;
D O I
10.1002/adfm.202010174
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The combination of inorganic and organic semiconductors in a heterojunction is considered a promising approach to overcome limitations of each individual material class. However, to date only few examples of improved (opto-)electronic functionality have been realized with such hybrid heterojunctions. The key to unraveling the full potential offered by inorganic/organic semiconductor heterojunctions is the ability to deliberately control the interfacial electronic energy levels. Here, a universal approach to adjust the offset between the energy levels at inorganic/organic semiconductor interfaces is demonstrated: the interlayer method. A monolayer-thick interlayer comprising strong electron donor or acceptor molecules is inserted between the two semiconductors and alters the energy level alignment due to charge transfer with the inorganic semiconductor. The general applicability of this method by tuning the energy levels of hydrogenated silicon relative to those of vacuum-processed films of a molecular semiconductor as well as solution-processed films of a polymer semiconductor is exemplified, and is shown that the energy level offset can be changed by up to 1.8 eV. This approach can be used to adjust the energy levels at the junction of a desired material pair at will, and thus paves the way for novel functionalities of optoelectronic devices.
引用
收藏
页数:7
相关论文
共 54 条
[1]   Metallic conduction at organic charge-transfer interfaces [J].
Alves, Helena ;
Molinari, Anna S. ;
Xie, Hangxing ;
Morpurgo, Alberto F. .
NATURE MATERIALS, 2008, 7 (07) :574-580
[2]  
[Anonymous], 2016, SCI REP UK
[3]   Chemical Trends in the Work Function of Modified Si(111) Surfaces: A DFT Study [J].
Arefi, Hadi H. ;
Fagas, Giorgos .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (26) :14346-14354
[4]   ATOMIC SCALE CONVERSION OF CLEAN SI(111)-H-1X1 TO SI(111)-2X1 BY ELECTRON-STIMULATED DESORPTION [J].
BECKER, RS ;
HIGASHI, GS ;
CHABAL, YJ ;
BECKER, AJ .
PHYSICAL REVIEW LETTERS, 1990, 65 (15) :1917-1920
[5]   Cascade energy transfer versus charge separation in ladder-type oligo(p-phenylene)/ZnO hybrid structures for light-emitting applications [J].
Bianchi, F. ;
Sadofev, S. ;
Schlesinger, R. ;
Kobin, B. ;
Hecht, S. ;
Koch, N. ;
Henneberger, F. ;
Blumstengel, S. .
APPLIED PHYSICS LETTERS, 2014, 105 (23)
[6]   TEMPERATURE-DEPENDENCE OF BAND-GAP OF SILICON [J].
BLUDAU, W ;
ONTON, A ;
HEINKE, W .
JOURNAL OF APPLIED PHYSICS, 1974, 45 (04) :1846-1848
[7]   Electronic coupling in organic-inorganic semiconductor hybrid structures with type-II energy level alignment [J].
Blumstengel, S. ;
Sadofev, S. ;
Xu, C. ;
Puls, J. ;
Johnson, R. L. ;
Glowatzki, H. ;
Koch, N. ;
Henneberger, F. .
PHYSICAL REVIEW B, 2008, 77 (08)
[8]   Energy level alignment regimes at hybrid organic-organic and inorganic-organic interfaces [J].
Braun, Slawomir ;
Osikowicz, Wojciech ;
Wang, Ying ;
Salaneck, William R. .
ORGANIC ELECTRONICS, 2007, 8 (01) :14-20
[9]   Nanoscale control of an interfacial metal-insulator transition at room temperature [J].
Cen, C. ;
Thiel, S. ;
Hammerl, G. ;
Schneider, C. W. ;
Andersen, K. E. ;
Hellberg, C. S. ;
Mannhart, J. ;
Levy, J. .
NATURE MATERIALS, 2008, 7 (04) :298-302
[10]   Surface transfer p-type doping of epitaxial graphene [J].
Chen, Wei ;
Chen, Shi ;
Qi, Dong Chen ;
Gao, Xing Yu ;
Wee, Andrew Thye Shen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (34) :10418-10422