Axion-Driven Cosmic Magnetogenesis during the QCD Crossover

被引:17
作者
Miniati, F. [1 ]
Gregori, G. [1 ]
Reville, B. [2 ]
Sarkar, S. [1 ,3 ]
机构
[1] Univ Oxford, Dept Phys, Parks Rd, Oxford OX1 3PU, England
[2] Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland
[3] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
MAGNETIC-FIELD AMPLIFICATION; TURBULENCE; GENERATION; CLUSTERS; BLAZARS; CASCADE; PLASMA;
D O I
10.1103/PhysRevLett.121.021301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a mechanism for the generation of a magnetic field in the early Universe during the QCD crossover assuming that dark matter is made of axions. Thermoelectric fields arise at pressure gradients in the primordial plasma due to the difference in charge, energy density, and equation of state between the quark and lepton components. The axion field is coupled to the EM field, so when its spatial gradient is misaligned with the thermoelectric field, an electric current is driven. Because of the finite resistivity of the plasma, an electric field appears that is generally rotational. For a QCD axion mass consistent with observational constraints and a conventional efficiency for turbulent dynamo amplification- driven by the same pressure gradients responsible for the thermoelectric fields-a magnetic field is generated on subhorizon scales. After significant Alfvenic unwinding, it reaches a present-day strength of B similar to 10(-13) G on a characteristic scale L-B similar to 20 pc. The resulting combination of BLB1/2 is significantly stronger than in any astrophysical scenario, providing a clear test for the cosmological origin of the field through. gamma-ray observations of distant blazars. The amplitude of the pressure gradients may be inferred from the detection of concomitant gravitational waves, while several experiments are underway to confirm or rule out the existence of axions.
引用
收藏
页数:6
相关论文
共 70 条
  • [1] A COSMOLOGICAL BOUND ON THE INVISIBLE AXION
    ABBOTT, LF
    SIKIVIE, P
    [J]. PHYSICS LETTERS B, 1983, 120 (1-3) : 133 - 136
  • [2] Search for extended γ-ray emission around AGN with HESS and Fermi-LAT
    Abramowski, A.
    Aharonian, F.
    Benkhali, F. Ait
    Akhperjanian, A. G.
    Anguener, E.
    Anton, G.
    Backes, M.
    Balenderan, S.
    Balzer, A.
    Barnacka, A.
    Becherini, Y.
    Tjus, J. Becker
    Bernloehr, K.
    Birsin, E.
    Bissaldi, E.
    Biteau, J.
    Boettcher, M.
    Boisson, C.
    Bolmont, J.
    Bordas, P.
    Brucker, J.
    Brun, F.
    Brun, P.
    Bulik, T.
    Carrigan, S.
    Casanova, S.
    Chadwick, P. M.
    Chalme-Calvet, R.
    Chaves, R. C. G.
    Cheesebrough, A.
    Chretien, M.
    Colafrancesco, S.
    Cologna, G.
    Conrad, J.
    Couturier, C.
    Cui, Y.
    Djannati-Atai, A.
    Domainko, W.
    Drury, L. O'C.
    Dubus, G.
    Dutson, K.
    Dyks, J.
    Dyrda, M.
    Edwards, T.
    Egberts, K.
    Eger, P.
    Espigat, P.
    Farnier, C.
    Fegan, S.
    Feinstein, F.
    [J]. ASTRONOMY & ASTROPHYSICS, 2014, 562
  • [3] Acharya B. S., ARXIV170907997
  • [4] [Anonymous], ARXIV13097035
  • [5] The order of the quantum chromodynamics transition predicted by the standard model of particle physics
    Aoki, Y.
    Endrodi, G.
    Fodor, Z.
    Katz, S. D.
    Szabo, K. K.
    [J]. NATURE, 2006, 443 (7112) : 675 - 678
  • [6] Search for Magnetically Broadened Cascade Emission from Blazars with VERITAS
    Archambault, S.
    Archer, A.
    Benbow, W.
    Buchovecky, M.
    Bugaev, V.
    Cerruti, M.
    Connolly, M. P.
    Cui, W.
    Falcone, A.
    Alonso, M. Fernandez
    Finley, J. P.
    Fleischhack, H.
    Fortson, L.
    Furniss, A.
    Griffin, S.
    Hutten, M.
    Hervet, O.
    Holder, J.
    Humensky, T. B.
    Johnson, C. A.
    Kaaret, P.
    Kar, P.
    Kieda, D.
    Krause, M.
    Krennrich, F.
    Lang, M. J.
    Lin, T. T. Y.
    Maier, G.
    McArthur, S.
    Moriarty, P.
    Nieto, D.
    O'Brien, S.
    Ong, R. A.
    Otte, A. N.
    Pohl, M.
    Popkow, A.
    Pueschel, E.
    Quinn, J.
    Ragan, K.
    Reynolds, P. T.
    Richards, G. T.
    Roache, E.
    Rovero, A. C.
    Sadeh, I.
    Shahinyan, K.
    Staszak, D.
    Telezhinsky, I.
    Tyler, J.
    Wakely, S. P.
    Weinstein, A.
    [J]. ASTROPHYSICAL JOURNAL, 2017, 835 (02)
  • [7] Evolution of cosmic magnetic fields: From the very early Universe, to recombination, to the present
    Banerjee, R
    Jedamzik, K
    [J]. PHYSICAL REVIEW D, 2004, 70 (12): : 25
  • [8] Quark number susceptibilities at high temperatures
    Bazavov, A.
    Ding, H. -T.
    Hegde, P.
    Karsch, F.
    Miao, C.
    Mukherjee, Swagato
    Petreczky, P.
    Schmidt, C.
    Velytsky, A.
    [J]. PHYSICAL REVIEW D, 2013, 88 (09):
  • [9] Fluctuations and correlations in high temperature QCD
    Bellwied, R.
    Borsanyi, S.
    Fodor, Z.
    Katz, S. D.
    Pasztor, A.
    Ratti, C.
    Szabo, K. K.
    [J]. PHYSICAL REVIEW D, 2015, 92 (11)
  • [10] TURBULENT AMPLIFICATION AND STRUCTURE OF THE INTRACLUSTER MAGNETIC FIELD
    Beresnyak, Andrey
    Miniati, Francesco
    [J]. ASTROPHYSICAL JOURNAL, 2016, 817 (02)