Background Learning Based on Target Suppression Constraint for Hyperspectral Target Detection

被引:75
作者
Xie, Weiying [1 ]
Zhang, Xin [1 ]
Li, Yunsong [1 ]
Wang, Keyan [1 ]
Du, Qian [2 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Object detection; Training; Hyperspectral imaging; Generative adversarial networks; Image reconstruction; Gallium nitride; Feature extraction; Background learning; hyperspectral image (HSI); target detection; target suppression constraint; COLLABORATIVE REPRESENTATION; SPARSE; AUTOENCODER; FILTER;
D O I
10.1109/JSTARS.2020.3024903
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral target detection is critical in both military and civilian applications. However, it is a challenging task due to the complexity of background and the limited samples of target in hyperspectral images (HSIs). In this article, we propose a novel background learning model, called background learning based on target suppression constraint to characterize high-dimensional spectral vectors. Considering insufficient target samples, the model is trained only on the background spectral samples to accurately learn the background distribution. Then the discrepancy between the reconstructed and original HSIs are examined to spot the targets. To obtain a background training dataset, coarse detection is carried out. However, it is quite difficult to retrieve pure background data. Thus, a target suppression constraint is imposed to reduce the impact of suspected target samples on background reconstruction. Experiments on six real HSIs demonstrate that the proposed framework significantly outperforms the current state-of-the-art detection methods and yields higher detection accuracy and lower false alarm rate.
引用
收藏
页码:5887 / 5897
页数:11
相关论文
共 44 条
[1]  
[Anonymous], 2015, CoRR abs/1511.05644, Patent No. [ArXiv151105644Cs, 151105644]
[2]  
Chalapathy R., 2019, DEEP LEARNING ANOMAL
[3]   Adaptive Window-Based Constrained Energy Minimization for Detection of Newly Grown Tree Leaves [J].
Chen, Shih-Yu ;
Lin, Chinsu ;
Tai, Chia-Hui ;
Chuang, Shang-Ju .
REMOTE SENSING, 2018, 10 (01)
[4]   StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [J].
Choi, Yunjey ;
Choi, Minje ;
Kim, Munyoung ;
Ha, Jung-Woo ;
Kim, Sunghun ;
Choo, Jaegul .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8789-8797
[5]   Predicting dark respiration rates of wheat leaves from hyperspectral reflectance [J].
Coast, Onoriode ;
Shah, Shahen ;
Ivakov, Alexander ;
Gaju, Oorbessy ;
Wilson, Philippa B. ;
Posch, Bradley C. ;
Bryant, Callum J. ;
Negrini, Anna Clarissa A. ;
Evans, John R. ;
Condon, Anthony G. ;
Silva-Perez, Viridiana ;
Reynolds, Matthew P. ;
Pogson, Barry J. ;
Millar, A. Harvey ;
Furbank, Robert T. ;
Atkin, Owen K. .
PLANT CELL AND ENVIRONMENT, 2019, 42 (07) :2133-2150
[6]  
Donahue J., 2016, P ICLR
[7]   In-Vivo Hyperspectral Human Brain Image Database for Brain Cancer Detection [J].
Fabelo, Himar ;
Ortega, Samuel ;
Szolna, Adam ;
Bulters, Diederik ;
Pineiro, Juan F. ;
Kabwama, Silvester ;
J-O'Shanahan, Aruma ;
Bulstrode, Harry ;
Bisshopp, Sara ;
Kiran, B. Ravi ;
Ravi, Daniele ;
Lazcano, Raquel ;
Madronal, Daniel ;
Sosa, Coralia ;
Espino, Carlos ;
Marquez, Mariano ;
De La Luz Plaza, Maria ;
Camacho, Rafael ;
Carrera, David ;
Hernandez, Maria ;
Callico, Gustavo M. ;
Morera Molina, Jesus ;
Stanciulescu, Bogdan ;
Yang, Guang-Zhong ;
Salvador, Ruben ;
Juarez, Eduardo ;
Sanz, Cesar ;
Sarmiento, Roberto .
IEEE ACCESS, 2019, 7 :39098-39116
[8]   Mapping the distribution of mine tailings in the Coeur d'Alene River Valley, Idaho, through the use of a constrained energy minimization technique [J].
Farrand, WH ;
Harsanyi, JC .
REMOTE SENSING OF ENVIRONMENT, 1997, 59 (01) :64-76
[9]  
Ferri C., 2011, P 28 INT C MACH LEAR, P657
[10]   A Convolutional Neural Network Classifier Identifies Tree Species in Mixed-Conifer Forest from Hyperspectral Imagery [J].
Fricker, Geoffrey A. ;
Ventura, Jonathan D. ;
Wolf, Jeffrey A. ;
North, Malcolm P. ;
Davis, Frank W. ;
Franklin, Janet .
REMOTE SENSING, 2019, 11 (19)