NONLINEAR BIHARMONIC PROBLEMS WITH SINGULAR POTENTIALS

被引:25
作者
Carriao, P. . C. . [1 ]
Demarque, R. [2 ]
Miyagaki, O. H. [3 ]
机构
[1] Univ Fed Minas Gerais, Dept Mat, BR-30161970 Belo Horizonte, MG, Brazil
[2] Univ Fed Fluminense, Dept Fis Mat, BR-28890000 Rio Ostras, RJ, Brazil
[3] Univ Fed Juiz Fora, Dept Mat, BR-36036330 Juiz De Fora, MG, Brazil
关键词
Biharmonic operator; critical potential; radially symmetric solution; ELLIPTIC PROBLEMS; EQUATIONS;
D O I
10.3934/cpaa.2014.13.2141
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with the problem Delta(2)u + V (vertical bar x vertical bar)u - f(u), u is an element of D-2,D-2 (R-N) where Delta(2) is biharmonic operator and the potential V > 0 is measurable, singular at the origin and may also have a continuous set of singularities. The nonlinearity is continuous and has a super-linear power-like behaviour; both sub-critical and super-critical cases are considered. We prove the existence of nontrivial radial solutions. If f is odd, we show that the problem has infinitely many radial solutions.
引用
收藏
页码:2141 / 2154
页数:14
相关论文
共 18 条
[1]   On a class of singular biharmonic problems involving critical exponents [J].
Alves, CO ;
do O, JM ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (01) :12-26
[2]  
Alves CO, 2002, ADV NONLINEAR STUD, V2, P437
[3]   Nontrivial solutions for a class of semilinear biharmonic problems involving critical exponents [J].
Alves, CO ;
do O, JM ;
Miyagaki, OH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (01) :121-133
[4]  
[Anonymous], 2010, POLYHARMONIC BOUNDAR
[5]  
Badiale M, 2006, REND LINCEI-MAT APPL, V17, P1
[6]  
Bernis F., 1996, Advances in Differential Equations, V1, P219
[7]   On some fourth-order semilinear elliptic problems in RN [J].
Chabrowski, J ;
do O, JM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 49 (06) :861-884
[8]  
Noussair ES., 1992, FUNKC EKVACIOJ-SER I, V35, P533
[9]  
Rabinowitz PH, 1986, MINIMAX METHODS CRIT
[10]   EXISTENCE OF SOLITARY WAVES IN HIGHER DIMENSIONS [J].
STRAUSS, WA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) :149-162