Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction

被引:169
作者
Shin, Dong Ok [1 ,2 ]
Oh, Kyungbae [3 ]
Kim, Kwang Man [1 ]
Park, Kyu-Young [3 ,4 ]
Lee, Byungju [3 ,4 ]
Lee, Young-Gi [1 ]
Kang, Kisuk [3 ,4 ]
机构
[1] Elect & Telecommun Res Inst, Reseach Sect Power Control Devices, Daejeon 305700, South Korea
[2] Univ Sci & Technol, Dept Adv Device Engn, Daejeon 305350, South Korea
[3] Seoul Natl Univ, Res Inst Adv Mat, Dept Mat Sci & Engn, Seoul 151742, South Korea
[4] Seoul Natl Univ, Inst Basic Sci, Ctr Nanoparticle Res, Seoul 151742, South Korea
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
CRYSTAL-STRUCTURE; AL; TEMPERATURE; STABILITY; PROGRESS; BATTERY; TA; GA;
D O I
10.1038/srep18053
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Here, we investigate the doping effects on the lithium ion transport behavior in garnet Li7La3Zr2O12 (LLZO) from the combined experimental and theoretical approach. The concentration of Li ion vacancy generated by the inclusion of aliovalent dopants such as Al-3+ plays a key role in stabilizing the cubic LLZO. However, it is found that the site preference of Al in 24d position hinders the three dimensionally connected Li ion movement when heavily doped according to the structural refinement and the DFT calculations. In this report, we demonstrate that the multi-doping using additional Ta dopants into the Al-doped LLZO shifts the most energetically favorable sites of Al in the crystal structure from 24d to 96 h Li site, thereby providing more open space for Li ion transport. As a result of these synergistic effects, the multi-doped LLZO shows about three times higher ionic conductivity of 6.14 x 10(-4) S cm(-1) than that of the singly-doped LLZO with a much less efforts in stabilizing cubic phases in the synthetic condition.
引用
收藏
页数:9
相关论文
共 49 条
  • [1] Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12
    Allen, J. L.
    Wolfenstine, J.
    Rangasamy, E.
    Sakamoto, J.
    [J]. JOURNAL OF POWER SOURCES, 2012, 206 : 315 - 319
  • [2] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [3] Screening of the alkali-metal ion containing materials from the Inorganic Crystal Structure Database (ICSD) for high ionic conductivity pathways using the bond valence method
    Avdeev, Max
    Sale, Matthew
    Adams, Stefan
    Rao, R. Prasada
    [J]. SOLID STATE IONICS, 2012, 225 : 43 - 46
  • [4] Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12
    Awaka, Junji
    Takashima, Akira
    Kataoka, Kunimitsu
    Kijima, Norihito
    Idemoto, Yasushi
    Akimoto, Junji
    [J]. CHEMISTRY LETTERS, 2011, 40 (01) : 60 - 62
  • [5] Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure
    Awaka, Junji
    Kijima, Norihito
    Hayakawa, Hiroshi
    Akimoto, Junji
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2009, 182 (08) : 2046 - 2052
  • [6] Safety mechanisms in lithium-ion batteries
    Balakrishnan, PG
    Ramesh, R
    Kumar, TP
    [J]. JOURNAL OF POWER SOURCES, 2006, 155 (02) : 401 - 414
  • [7] Electrolytic stability limit and rapid lithium insertion in the fast-ion-conducting Li0.29La0.57TiO3 perovskite-type compound
    Birke, P
    Scharner, S
    Huggins, RA
    Weppner, W
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) : L167 - L169
  • [8] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [9] Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
  • [10] Ewald PP, 1921, ANN PHYS-BERLIN, V64, P253