SECOND HANKEL DETERMINAT FOR CERTAIN ANALYTIC FUNCTIONS SATISFYING SUBORDINATE CONDITION

被引:7
作者
Deniz, Erhan [1 ]
Budak, Levent [1 ]
机构
[1] Kafkas Univ, Fac Sci & Letters, Dept Math, Kars, Turkey
关键词
analytic functions; starlike functions; convex functions; Ma-Minda starlike functions; Ma-Minda convex functions; subordination; second Hankel determinant; FEKETE-SZEGO PROBLEM; COMPLEX-ORDER; SUBCLASSES; STARLIKE;
D O I
10.1515/ms-2017-0116
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and investigate the following subclass 1 + 1/gamma (zf'(z) + lambda z(2) f ''(z)/lambda z f'(z) + (1 - lambda)f(z) - 1) (sic) phi(z) (0 <= lambda <= 1, gamma is an element of C \ {0}) of analytic functions, phi is an analytic function with positive real part in the unit disk D satisfying phi(0) = 1, phi'(0) > 0, and phi(D) is symmetric with respect to the real axis. We obtain the upper bound of the second Hankel determinant vertical bar a(2)a(4) - a(3)(2)vertical bar ail for functions belonging to the this class is studied using Toeplitz determinants. The results, which are presented in this paper, would generalize those in related works of several earlier authors. (C) 2018 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:463 / 471
页数:9
相关论文
共 14 条
[1]  
Ali RM, 2009, B IRAN MATH SOC, V35, P119
[2]   POWER SERIES WITH INTEGRAL COEFFICIENTS [J].
CANTOR, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1963, 69 (03) :362-&
[3]   THE FEKETE-SZEGO PROBLEM FOR A CLASS OF ANALYTIC FUNCTIONS DEFINED BY DZIOK-SRIVASTAVA OPERATOR [J].
Deniz, Erhan ;
Caglar, Murat ;
Orhan, Halit .
KODAI MATHEMATICAL JOURNAL, 2012, 35 (03) :439-462
[4]  
Duren P.L., 1983, UNIVALENT FUNCTIONS, V259
[5]  
Fekete M, 1933, J. London Math. Soc., V1, P85, DOI [10.1112/jlms/s1-8.2.85, DOI 10.1112/JLMS/S1-8.2.85]
[6]  
Grenander U, 1958, California Monographs in Mathematical Sciences
[7]  
Janteng S.A., 2007, Int. J.Math.Anal., V1, P619
[8]   Fekete-Szego problem for starlike and convex functions of complex order [J].
Kanas, S. ;
Darwish, H. E. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (07) :777-782
[9]   Bounds for the second Hankel determinant of certain univalent functions [J].
Lee, See Keong ;
Ravichandran, V. ;
Supramaniam, Shamani .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[10]  
Ma W., 1992, P C COMPL AN, P157