Criterion on the nonexistence of exact invariants in adiabatic systems

被引:0
作者
Despina, Voyatzi [1 ]
Efi, Meletlidou [1 ]
机构
[1] Univ Thessaloniki, Dept Phys, Thessaloniki 54124, Greece
来源
RECENT ADVANCES IN ASTRONOMY AND ASTROPHYSICS | 2006年 / 848卷
关键词
adiabatic systems; nonintegrability;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the present paper we investigate the nonintegrability of adiabatic one degree of freedom Hamiltonian systems, with the additional assumption that the frozen system possesses an unstable fixed point with two asymmetric homoclinic loops. We prove a criterion for the nonexistence of an integral for such systems, and therefore we prove the nonexistence of a quantity which is conserved in an arbitrarily high order on epsilon. A specific application is given in the asymmetric quartic oscillator with adiabatic time dependence.
引用
收藏
页码:753 / +
页数:2
相关论文
共 12 条
[1]  
[Anonymous], 1962, Introduction to Nonlinear and Differential Integral Equations
[2]   Adiabatic invariance and applications: From molecular dynamics to numerical weather prediction [J].
Cotter, CJ ;
Reich, S .
BIT NUMERICAL MATHEMATICS, 2004, 44 (03) :439-455
[3]   ADIABATIC INVARIANTS OF PERIODIC CLASSICAL SYSTEMS [J].
GARDNER, CS .
PHYSICAL REVIEW, 1959, 115 (04) :791-794
[4]  
Henrard J, 1993, DYNAMICS REPORTED EX, P117, DOI DOI 10.1007/978-3-642-61232-9_4
[5]   A GEOMETRIC CRITERION FOR ADIABATIC CHAOS [J].
KAPER, TJ ;
KOVACIC, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (03) :1202-1218
[7]   ON THE NUMBER OF ISOLATING INTEGRALS IN PERTURBED HAMILTONIAN-SYSTEMS WITH N-GREATER-THAN-OR-EQUAL-TO-3 DEGREES OF FREEDOM [J].
MELETLIDOU, E ;
ICHTIAROGLOU, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (11) :3919-3926
[8]   A CRITERION FOR NONINTEGRABILITY BASED ON POINCARES THEOREM [J].
MELETLIDOU, E ;
ICHTIAROGLOU, S .
PHYSICA D-NONLINEAR PHENOMENA, 1994, 71 (03) :261-268
[9]  
NEISHTADT AI, 1981, PMM-J APPL MATH MEC+, V45, P58
[10]   SEPARATION OF MOTIONS IN SYSTEMS WITH RAPIDLY ROTATING PHASE. [J].
Neishtadt, A.I. .
Journal of Applied Mathematics and Mechanics, 1984, 48 (02) :133-139