Sobolev spaces with zero boundary values on metric spaces

被引:92
作者
Kilpeläinen, T
Kinnunen, J
Martio, O
机构
[1] Univ Jyvaskyla, Dept Math, FIN-40351 Jyvaskyla, Finland
[2] Univ Helsinki, Dept Math, FIN-00014 Helsinki, Finland
关键词
capacity; Sobolev spaces;
D O I
10.1023/A:1008601220456
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the definition of the first order Sobolev spaces with zero boundary values to an arbitrary metric space endowed with a Borel regular measure. We show that many classical results extend to the metric setting. These include completeness, lattice properties and removable sets.
引用
收藏
页码:233 / 247
页数:15
相关论文
共 25 条
[1]  
Adams D. R., 1996, FUNCTIONS SPACES POT
[2]  
[Anonymous], 1971, SINGULAR INTEGRALS D, DOI DOI 10.1515/9781400883882
[3]  
Bagby T., 1972, J FUNCT ANAL, V10, P259
[4]   AN EMBEDDING THEOREM AND THE HARNACK INEQUALITY FOR NONLINEAR SUBELLIPTIC EQUATIONS [J].
CAPOGNA, L ;
DANIELLI, D ;
GAROFALO, N .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (9-10) :1765-1794
[5]  
Capogna L, 1996, AM J MATH, V118, P1153
[6]  
Coifman RR., 1971, Lect. Notes Math., DOI 10.1007/BFb0058946
[7]   WEIGHTED SOBOLEV-POINCARE INEQUALITIES FOR GRUSHIN TYPE OPERATORS [J].
FRANCHI, B ;
GUTIERREZ, CE ;
WHEEDEN, RL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (3-4) :523-604
[8]  
FRANCHI B., 1996, Int. Math. Res. Not. IMRN, V1996, P1
[9]  
Garofalo N, 1996, COMMUN PUR APPL MATH, V49, P1081, DOI 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO
[10]  
2-A