Asymptotic profiles of solutions to convection-diffusion equations

被引:3
|
作者
Benachour, S
Karch, G
Laurençot, P
机构
[1] Univ Henri Poincare, Inst Elie Cartan Nancy, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
[3] Polish Acad Sci, Inst Math, Warsaw, Poland
[4] Univ Toulouse 3, CNRS, UMR 5640, F-31062 Toulouse, France
关键词
D O I
10.1016/j.crma.2004.01.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The large time behavior of zero-mass solutions to the Cauchy problem for the convection-diffusion equation u(t) - u(xx) + (\u\(q))(x) = 0, u(x, 0) = u(0)(x) is studied when q > 1 and the initial datum u(0) belongs to L-1(R, (1 + \x\) dx) and satisfies integral(R) u(0) (x) dx = 0. We provide conditions on the size and shape of the initial datum u(0) as well as on the exponent q > 1 such that the large time asymptotics of solutions is given either by the derivative of the Gauss-Weierstrass kernel, or by a self-similar solution of the equation, or by hyperbolic N-waves. (C) 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:369 / 374
页数:6
相关论文
共 50 条
  • [31] AN ERROR ESTIMATE FOR VISCOUS APPROXIMATE SOLUTIONS TO DEGENERATE ANISOTROPIC CONVECTION-DIFFUSION EQUATIONS
    Klingenberg, Christian
    Koley, Ujjwal
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 741 - 748
  • [32] THE ASYMPTOTIC STABILITY OF STEADY SOLUTIONS OF REACTION-CONVECTION-DIFFUSION EQUATIONS
    HOWES, FA
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1988, 388 : 212 - 220
  • [33] Generalized trapezoidal formulas for convection-diffusion equations
    Chawla, M.M.
    Al-Zanaidi, M.A.
    Evans, D.J.
    International Journal of Computer Mathematics, 1999, 72 (2-4): : 141 - 154
  • [34] LINEARLY IMPLICIT SCHEMES FOR CONVECTION-DIFFUSION EQUATIONS
    Cavalli, Fausto
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 423 - 430
  • [35] A New Method for Solving Convection-Diffusion Equations
    Liao, Wenyuan
    Zhu, Jianping
    CSE 2008: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING, 2008, : 107 - +
  • [36] On the dynamics of some discretisations of convection-diffusion equations
    Sweby, PK
    Yee, HC
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 553 - 554
  • [37] A MORE ACCURATE ALGORITHM OF CONVECTION-DIFFUSION EQUATIONS
    LUO, ZO
    CHINESE SCIENCE BULLETIN, 1990, 35 (17): : 1485 - 1488
  • [38] SOME INVERSE PROBLEMS FOR CONVECTION-DIFFUSION EQUATIONS
    Pyatkov, S. G.
    Safonov, E. I.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2014, 7 (04): : 36 - 50
  • [39] A posteriori error estimators for convection-diffusion equations
    R. Verfürth
    Numerische Mathematik, 1998, 80 : 641 - 663
  • [40] UPWIND SPLITTING SCHEME FOR CONVECTION-DIFFUSION EQUATIONS
    梁栋
    芮洪兴
    程爱杰
    Numerical Mathematics A Journal of Chinese Universities(English Series), 2000, (01) : 45 - 54