Universal constraints on conformal operator dimensions

被引:167
作者
Rychkov, Vyacheslav S. [1 ,3 ]
Vichi, Alessandro [2 ]
机构
[1] Scuola Normale Super Pisa, I-56100 Pisa, Italy
[2] Ecole Polytech Fed Lausanne, Inst Theorie Phenomenes Phys, CH-1015 Lausanne, Switzerland
[3] Ist Nazl Fis Nucl, I-56100 Pisa, Italy
关键词
D O I
10.1103/PhysRevD.80.045006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We continue the study of model-independent constraints on the unitary conformal field theories (CFTs) in four dimensions, initiated in [R. Rattazzi, V. S. Rychkov, E. Tonni, and A. Vichi, J. High Energy Phys. 12 (2008) 031]. Our main result is an improved upper bound on the dimension Delta of the leading scalar operator appearing in the operator product expansion (OPE) of two identical scalars of dimension d: phi(d)x phi(d)=1+O-Delta+.... In the interval 1 < d < 1.7 this universal bound takes the form Delta < 2+0.7(d-1)(1/2)+2.1(d-1)+0.43(d-1)(3/2). The proof is based on prime principles of CFT: unitarity, crossing symmetry, OPE, and conformal block decomposition. We also discuss possible applications to particle phenomenology and, via a 2D analogue, to string theory.
引用
收藏
页数:12
相关论文
共 25 条
[21]  
Press W. H., 2007, Numerical Recipes 3rd Edition: The Art of Scientific Computing
[22]   Bounding scalar operator dimensions in 4D CFT [J].
Rattazzi, Riccardo ;
Rychkov, Vyacheslav S. ;
Tonni, Erik ;
Vichi, Alessandro .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (12)
[23]   ELECTRIC MAGNETIC DUALITY IN SUPERSYMMETRIC NON-ABELIAN GAUGE-THEORIES [J].
SEIBERG, N .
NUCLEAR PHYSICS B, 1995, 435 (1-2) :129-146
[24]   Conformal bootstrap in Liouville field theory [J].
Zamolodchikov, A ;
Zamolodchikov, A .
NUCLEAR PHYSICS B, 1996, 477 (02) :577-605
[25]  
ZAMOLODCHIKOV AB, ITEP9031