Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining

被引:424
作者
Ninomiya, Y [1 ]
Suzuki, K [1 ]
Ishii, C [1 ]
Inoue, H [1 ]
机构
[1] Saitama Univ, Dept Regulat Biol, Fac Sci, Sakura Ku, Saitama 3388570, Japan
关键词
Ku70; Ku80; gene targeting; Neurospora crassa;
D O I
10.1073/pnas.0402780101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gene disruption and overexpression play central roles in the analysis of gene function. Homologous recombination is, in principle, the most efficient method of disrupting, modifying, or replacing a target gene. Although homologous integration of exogenous DNA into the genome occurs readily in Saccharomyces cerevisiae, it is rare in many other organisms. We identified and disrupted Neurospora crassa genes homologous to human KU70 and KU80, which encode proteins that function in nonhomologous end-joining of double-stranded DNA breaks. The resulting mutants, named mus-51 and mus-52, showed higher sensitivity to methyl methanesulfonate, ethyl methanesulfonate, and bleomycin than wild type, but not to UV, 4-nitroquinoline 1-oxide, camptothecin, or hydroxyurea. Vegetative growth, conicliation, and ascospore production in homozygous crosses were normal. The frequency of integration of exogenous DNA into homologous sequences of the genome in the KU disruption strains of N. crassa was compared with that in wild type, mei-3, and mus-11. In mei-3 and mus-11, which are defective in homologous recombination, none or few homologous integration events were observed under any conditions. When mtr target DNAwith =2-kb 5'and 3'flanking regions was used for transformation of the KU disruption strains, 100% of transformants exhibited integration at the homologous site, compared to 10 to 30% for a wild-type recipient. Similar results were obtained when the ad-3A gene was targeted for disruption. These results indicate that KU disruption strains are efficient recipients for gene targeting.
引用
收藏
页码:12248 / 12253
页数:6
相关论文
共 32 条
[1]   Lessons from the genome sequence of Neurospora crassa:: Tracing the path from genomic blueprint to multicellular organism [J].
Borkovich, KA ;
Alex, LA ;
Yarden, O ;
Freitag, M ;
Turner, GE ;
Read, ND ;
Seiler, S ;
Bell-Pedersen, D ;
Paietta, J ;
Plesofsky, N ;
Plamann, M ;
Goodrich-Tanrikulu, M ;
Schulte, U ;
Mannhaupt, G ;
Nargang, FE ;
Radford, A ;
Selitrennikoff, C ;
Galagan, JE ;
Dunlap, JC ;
Loros, JJ ;
Catcheside, D ;
Inoue, H ;
Aramayo, R ;
Polymenis, M ;
Selker, EU ;
Sachs, MS ;
Marzluf, GA ;
Paulsen, I ;
Davis, R ;
Ebbole, DJ ;
Zelter, A ;
Kalkman, ER ;
O'Rourke, R ;
Bowring, F ;
Yeadon, J ;
Ishii, C ;
Suzuki, K ;
Sakai, W ;
Pratt, R .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2004, 68 (01) :1-+
[2]   DNA-end-joining: from yeast to man [J].
Critchlow, SE ;
Jackson, SP .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (10) :394-398
[3]  
Davis R. H., 1970, METHODS ENZYMOLOGY A, V17, P79, DOI DOI 10.1016/0076-6879(71)17168-6
[4]   Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids [J].
Dynan, WS ;
Yoo, S .
NUCLEIC ACIDS RESEARCH, 1998, 26 (07) :1551-1559
[5]   The genome sequence of the filamentous fungus Neurospora crassa [J].
Galagan, JE ;
Calvo, SE ;
Borkovich, KA ;
Selker, EU ;
Read, ND ;
Jaffe, D ;
FitzHugh, W ;
Ma, LJ ;
Smirnov, S ;
Purcell, S ;
Rehman, B ;
Elkins, T ;
Engels, R ;
Wang, SG ;
Nielsen, CB ;
Butler, J ;
Endrizzi, M ;
Qui, DY ;
Ianakiev, P ;
Pedersen, DB ;
Nelson, MA ;
Werner-Washburne, M ;
Selitrennikoff, CP ;
Kinsey, JA ;
Braun, EL ;
Zelter, A ;
Schulte, U ;
Kothe, GO ;
Jedd, G ;
Mewes, W ;
Staben, C ;
Marcotte, E ;
Greenberg, D ;
Roy, A ;
Foley, K ;
Naylor, J ;
Stabge-Thomann, N ;
Barrett, R ;
Gnerre, S ;
Kamal, M ;
Kamvysselis, M ;
Mauceli, E ;
Bielke, C ;
Rudd, S ;
Frishman, D ;
Krystofova, S ;
Rasmussen, C ;
Metzenberg, RL ;
Perkins, DD ;
Kroken, S .
NATURE, 2003, 422 (6934) :859-868
[6]   Characterization of the Neurospora crassa mus-25 mutant:: the gene encodes a protein which is homologous to the Saccharomyces cerevisiae Rad54 protein [J].
Handa, N ;
Noguchi, Y ;
Sakuraba, Y ;
Ballario, P ;
Macino, G ;
Fujimoto, N ;
Ishii, C ;
Inoue, H .
MOLECULAR AND GENERAL GENETICS, 2000, 264 (1-2) :154-163
[7]   Identification and expression of the Neurospora crassa mei-3 gene which encodes a protein homologous to Rad51 of Saccharomyces cerevisiae [J].
Hatakeyama, S ;
Ishii, C ;
Inoue, H .
MOLECULAR & GENERAL GENETICS, 1995, 249 (04) :439-446
[8]   ISOLATION AND CHARACTERIZATION OF MMS-SENSITIVE MUTANTS OF NEUROSPORA-CRASSA [J].
INOUE, H ;
ISHII, C .
MUTATION RESEARCH, 1984, 125 (02) :185-194
[9]   The Neurospora crassa mus-19 gene is identical to the qde-3 gene, which encodes a RecQ homologue and is involved in recombination repair and postreplication repair [J].
Kato, A ;
Akamatsu, Y ;
Sakuraba, Y ;
Inoue, H .
CURRENT GENETICS, 2004, 45 (01) :37-44
[10]   PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors [J].
Kuwayama, H ;
Obara, S ;
Morio, T ;
Katoh, M ;
Urushihara, H ;
Tanaka, Y .
NUCLEIC ACIDS RESEARCH, 2002, 30 (02) :E2