EXISTENCE OF WEAK SOLUTIONS FOR QUASILINEAR PARABOLIC SYSTEMS IN DIVERGENCE FORM WITH VARIABLE GROWTH

被引:0
作者
Yang, Miaomiao [1 ]
Fu, Yongqiang [2 ]
机构
[1] Qilu Inst Technol, Sch Sci, Jinan 250001, Shandong, Peoples R China
[2] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable exponent; Young measures; weak solutions; quasilinear parabolic system; Galerkin's approximation; SPACES; EXPONENT;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the existence of weak solutions for quasilinear parabolic system in divergence form with variable growth. By means of Young measures, Galerkin's approximation method and the theory of variable exponents spaces, we obtain the existence of weak solutions.
引用
收藏
页数:19
相关论文
共 39 条
[1]   Regularity results for parabolic systems related to a class of non-Newtonian fluids [J].
Acerbi, E ;
Mingione, G ;
Seregin, GA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (01) :25-60
[2]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[3]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
[4]  
[Anonymous], 1969, Quelques methodes de resolution des problemes aux limites non lineaires
[5]  
[Anonymous], 1979, Res. Notes in Math.
[6]  
[Anonymous], 1937, Comptes Rendus de la Societe des Sciences et des Lettres de Varsovie, classe III
[7]  
[Anonymous], 2015, MONOGRAPHS RES NOTES
[8]   A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions [J].
Antontsev, SN ;
Shmarev, SI .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) :515-545
[9]  
BALL JM, 1989, LECT NOTES PHYS, V344, P207
[10]   Existence of solutions for p(x)-Laplacian problems on a bounded domain [J].
Chabrowski, J ;
Fu, YQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (02) :604-618