Fourier multipliers and periodic solutions of delay equations in Banach spaces

被引:35
作者
Lizama, Carlos [1 ]
机构
[1] Univ Santiago Chile, Fac Ciencias, Dept Matemat, Santiago, Chile
关键词
Fourier multipliers; R-boundedness; UMD-spaces; delay equations; C-0-semigroups;
D O I
10.1016/j.jmaa.2005.12.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we characterize the existence and uniqueness of periodic solutions of inhomogeneous abstract delay equations and establish maximal regularity results for strong solutions. The conditions are obtained in terms of R-boundedness of linear operators determined by the equations and L-p-Fourier multipliers. Periodic mild solutions are also studied and characterized. (c) 2005 Elsevier Inc. All fights reserved.
引用
收藏
页码:921 / 933
页数:13
相关论文
共 22 条
[1]  
Amann H., 1995, MONOGR MATH, V89
[2]  
[Anonymous], 1971, APPL MATH SCI
[3]   The operator-valued Marcinkiewicz multiplier theorem and maximal regularity [J].
Arendt, W ;
Bu, SQ .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) :311-343
[4]  
ARENDT W, 2001, MONOGR MATH, V96
[5]   Semigroups and linear partial differential equations with delay [J].
Bátkai, A ;
Piazzera, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 264 (01) :1-20
[6]  
Batkai A., 2003, ACTA SCI MATH, V69, P131
[7]   SOME REMARKS ON BANACH-SPACES IN WHICH MARTINGALE DIFFERENCE-SEQUENCES ARE UNCONDITIONAL [J].
BOURGAIN, J .
ARKIV FOR MATEMATIK, 1983, 21 (02) :163-168
[8]  
BURKHOLDER DL, 1983, P C HARM AN HON ANT, P270
[9]  
Denk R, 2003, MEM AM MATH SOC, V166, P1
[10]  
GIRARDI M, 2003, LECT NOTES PURE APPL, V234, P203