On the best constant in the weak type inequality for the square function of a conditionally symmetric martingale

被引:6
作者
Osekowski, Adam [1 ]
机构
[1] Univ Warsaw, Dept Math Informat & Mech, PL-02097 Warsaw, Poland
关键词
D O I
10.1016/j.spl.2009.03.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let f be a real conditionally symmetric martingale and S(f) denote its square function. The purpose of this note is to show that the inequality sup(lambda > 0)(lambda P(S(f) >= lambda)) <= K parallel to f parallel to(1). K = exp(-1/2) + integral(1)(0) exp(-t(2)/2)dt approximate to 1,4622 due to Bollobas, is sharp. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1536 / 1538
页数:3
相关论文
共 3 条
[1]   MARTINGALE INEQUALITIES [J].
BOLLOBAS, B .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1980, 87 (MAY) :377-382
[2]  
BURKHOLDER D. L., 1991, LECT NOTES MATH, V1464, P1
[3]  
Dellacherie C., 1982, Probabilities and Potential. B