A globally convergent descent method for nonsmooth variational inequalities

被引:5
作者
Panicucci, Barbara [1 ]
Pappalardo, Massimo [1 ]
Passacantando, Mauro [1 ]
机构
[1] Univ Pisa, Dept Appl Math, I-56127 Pisa, Italy
关键词
Nonsmooth variational inequality; Monotone map; Gap function; Descent method;
D O I
10.1007/s10589-007-9132-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a descent method via gap functions for solving nonsmooth variational inequalities with a locally Lipschitz operator. Assuming monotone operator (not necessarily strongly monotone) and bounded domain, we show that the method with an Armijo-type line search is globally convergent. Finally, we report some numerical experiments.
引用
收藏
页码:197 / 211
页数:15
相关论文
共 10 条
[1]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[2]  
Facchinei F., 2007, Finite-dimensional variational inequalities and complementarity problems
[3]   EQUIVALENT DIFFERENTIABLE OPTIMIZATION PROBLEMS AND DESCENT METHODS FOR ASYMMETRIC VARIATIONAL INEQUALITY PROBLEMS [J].
FUKUSHIMA, M .
MATHEMATICAL PROGRAMMING, 1992, 53 (01) :99-110
[4]   LOCAL UNIQUENESS AND CONVERGENCE OF ITERATIVE METHODS FOR NONSMOOTH VARIATIONAL-INEQUALITIES [J].
JIANG, HY ;
QI, LQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 196 (01) :314-331
[5]  
KONNOV I, 2006, DERIVATIVE FREE DESC, V13
[6]  
KONNOV IV, 2006, COMP MATH MATH PHYS, V46, P1186
[7]   Equivalence of variational inequality problems to unconstrained minimization [J].
Peng, JM .
MATHEMATICAL PROGRAMMING, 1997, 78 (03) :347-355
[8]   Some methods based on the D-gap function for solving monotone variational inequalities [J].
Solodov, MV ;
Tseng, P .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2000, 17 (2-3) :255-277
[9]  
Xu HF, 2001, APPL OPTIMIZAT, V47, P153
[10]   MODIFIED DESCENT METHODS FOR SOLVING THE MONOTONE VARIATIONAL INEQUALITY PROBLEM [J].
ZHU, DL ;
MARCOTTE, P .
OPERATIONS RESEARCH LETTERS, 1993, 14 (02) :111-120