Nonparametric density estimation in presence of bias and censoring

被引:13
作者
Brunel, E. [1 ]
Comte, F. [2 ]
Guilloux, A. [3 ]
机构
[1] IUT Paris V, MAP5, CNRS, UMR 8145, Paris, France
[2] Univ Paris 05, CNRS, MAP5, UMR 8145, Paris, France
[3] Univ Paris 06, LSTA, Paris, France
关键词
Adaptive estimation; Minimax rate; Biased data; Right-censoring; Nonparametric penalized contrast estimator; HAZARD RATE ESTIMATION; SELECTION; DISTRIBUTIONS; SAMPLES; BOUNDS;
D O I
10.1007/s11749-007-0075-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider projection estimator methods for the nonparametric estimation of the density of i.i.d. biased observations with a general known bias function w and under right censoring. Adaptive procedures to catch the optimal estimator among a collection by contrast penalization are investigated and proved to give efficient estimators with optimal nonparametric rates of convergence. Monte-Carlo experiments complete the study and illustrate the method.
引用
收藏
页码:166 / 194
页数:29
相关论文
共 50 条
[31]   Geometric Sensitivity Measures for Bayesian Nonparametric Density Estimation Models [J].
Saha, Abhijoy ;
Kurtek, Sebastian .
SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2019, 81 (01) :104-143
[32]   Nonparametric Bayesian density estimation on manifolds with applications to planar shapes [J].
Bhattacharya, Abhishek ;
Dunson, David B. .
BIOMETRIKA, 2010, 97 (04) :851-865
[33]   Asymptotics and optimal bandwidth for nonparametric estimation of density level sets [J].
Qiao, Wanli .
ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01) :302-344
[34]   Bootstrap consistency and bias correction in the nonparametric estimation of risk measures of collective risks [J].
Lauer, Alexandra ;
Zahle, Henryk .
INSURANCE MATHEMATICS & ECONOMICS, 2017, 74 :99-108
[35]   Adaptive estimation of the hazard rate with multiplicative censoring [J].
Chagny, G. ;
Comte, F. ;
Roche, A. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 184 :25-47
[36]   On generalized progressive hybrid censoring in presence of competing risks [J].
Koley, Arnab ;
Kundu, Debasis .
METRIKA, 2017, 80 (04) :401-426
[37]   Adaptive nonparametric estimation in the functional linear model with functional output [J].
Chagny, Gaelle ;
Meynaoui, Anouar ;
Roche, Angelina .
ELECTRONIC JOURNAL OF STATISTICS, 2025, 19 (01) :2990-3039
[38]   Nonparametric collective spectral density estimation with an application to clustering the brain signals [J].
Maadooliat, Mehdi ;
Sun, Ying ;
Chen, Tianbo .
STATISTICS IN MEDICINE, 2018, 37 (30) :4789-4806
[39]   EFFICIENT NONPARAMETRIC-ESTIMATION OF DISTRIBUTION DENSITY IN THE BASIS OF ALGEBRAIC POLYNOMIALS [J].
RADAVICIUS, M .
ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (01) :13-35
[40]   Sobolev-Hermite versus Sobolev nonparametric density estimation on R [J].
Belomestny, Denis ;
Comte, Fabienne ;
Genon-Catalot, Valentine .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2019, 71 (01) :29-62