Nonparametric density estimation in presence of bias and censoring

被引:13
作者
Brunel, E. [1 ]
Comte, F. [2 ]
Guilloux, A. [3 ]
机构
[1] IUT Paris V, MAP5, CNRS, UMR 8145, Paris, France
[2] Univ Paris 05, CNRS, MAP5, UMR 8145, Paris, France
[3] Univ Paris 06, LSTA, Paris, France
关键词
Adaptive estimation; Minimax rate; Biased data; Right-censoring; Nonparametric penalized contrast estimator; HAZARD RATE ESTIMATION; SELECTION; DISTRIBUTIONS; SAMPLES; BOUNDS;
D O I
10.1007/s11749-007-0075-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider projection estimator methods for the nonparametric estimation of the density of i.i.d. biased observations with a general known bias function w and under right censoring. Adaptive procedures to catch the optimal estimator among a collection by contrast penalization are investigated and proved to give efficient estimators with optimal nonparametric rates of convergence. Monte-Carlo experiments complete the study and illustrate the method.
引用
收藏
页码:166 / 194
页数:29
相关论文
共 50 条
[21]   NONPARAMETRIC SPECTRAL DENSITY ESTIMATION WITH MISSING OBSERVATIONS [J].
Lee, Thomas C. M. ;
Zhu, Zhengyuan .
2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, :3041-+
[22]   Efficient estimation of nonparametric regression in the presence of dynamic heteroskedasticity [J].
Linton, Oliver ;
Xiao, Zhijie .
JOURNAL OF ECONOMETRICS, 2019, 213 (02) :608-631
[23]   Nonparametric estimation of a periodic sequence in the presence of a smooth trend [J].
Vogt, Michael ;
Linton, Oliver .
BIOMETRIKA, 2014, 101 (01) :121-140
[24]   SMOOTHING BIAS IN DENSITY DERIVATIVE ESTIMATION [J].
STOKER, TM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (423) :855-863
[25]   Deconvolution boundary kernel method in nonparametric density estimation [J].
Zhang, Shunpu ;
Karunamuni, Rohana J. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (07) :2269-2283
[26]   Nonparametric density estimation for symmetric distributions by contaminated data [J].
Maiboroda, Rostyslav ;
Sugakova, Olena .
METRIKA, 2012, 75 (01) :109-126
[27]   A supervised deep learning method for nonparametric density estimation [J].
Bos, Thijs ;
Schmidt-Hieber, Johannes .
ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02) :5601-5658
[28]   Adaptive wavelet estimation of a density from mixtures under multiplicative censoring [J].
Chaubey, Yogendra P. ;
Chesneau, Christophe ;
Doosti, Hassan .
STATISTICS, 2015, 49 (03) :638-659
[29]   Cumulative distribution function estimation under interval censoring case 1 [J].
Brunel, Elodie ;
Comte, Fabienne .
ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 :1-24
[30]   Bayesian nonparametric density estimation for doubly-truncated data [J].
Chen, Yuhui ;
Hanson, Timothy .
STATISTICS AND ITS INTERFACE, 2014, 7 (04) :455-463