Nonparametric density estimation in presence of bias and censoring

被引:13
作者
Brunel, E. [1 ]
Comte, F. [2 ]
Guilloux, A. [3 ]
机构
[1] IUT Paris V, MAP5, CNRS, UMR 8145, Paris, France
[2] Univ Paris 05, CNRS, MAP5, UMR 8145, Paris, France
[3] Univ Paris 06, LSTA, Paris, France
关键词
Adaptive estimation; Minimax rate; Biased data; Right-censoring; Nonparametric penalized contrast estimator; HAZARD RATE ESTIMATION; SELECTION; DISTRIBUTIONS; SAMPLES; BOUNDS;
D O I
10.1007/s11749-007-0075-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider projection estimator methods for the nonparametric estimation of the density of i.i.d. biased observations with a general known bias function w and under right censoring. Adaptive procedures to catch the optimal estimator among a collection by contrast penalization are investigated and proved to give efficient estimators with optimal nonparametric rates of convergence. Monte-Carlo experiments complete the study and illustrate the method.
引用
收藏
页码:166 / 194
页数:29
相关论文
共 50 条
  • [21] NONPARAMETRIC SPECTRAL DENSITY ESTIMATION WITH MISSING OBSERVATIONS
    Lee, Thomas C. M.
    Zhu, Zhengyuan
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3041 - +
  • [22] Efficient estimation of nonparametric regression in the presence of dynamic heteroskedasticity
    Linton, Oliver
    Xiao, Zhijie
    JOURNAL OF ECONOMETRICS, 2019, 213 (02) : 608 - 631
  • [23] Nonparametric estimation of a periodic sequence in the presence of a smooth trend
    Vogt, Michael
    Linton, Oliver
    BIOMETRIKA, 2014, 101 (01) : 121 - 140
  • [24] SMOOTHING BIAS IN DENSITY DERIVATIVE ESTIMATION
    STOKER, TM
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (423) : 855 - 863
  • [25] Deconvolution boundary kernel method in nonparametric density estimation
    Zhang, Shunpu
    Karunamuni, Rohana J.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (07) : 2269 - 2283
  • [26] Nonparametric density estimation for symmetric distributions by contaminated data
    Maiboroda, Rostyslav
    Sugakova, Olena
    METRIKA, 2012, 75 (01) : 109 - 126
  • [27] A supervised deep learning method for nonparametric density estimation
    Bos, Thijs
    Schmidt-Hieber, Johannes
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 5601 - 5658
  • [28] Adaptive wavelet estimation of a density from mixtures under multiplicative censoring
    Chaubey, Yogendra P.
    Chesneau, Christophe
    Doosti, Hassan
    STATISTICS, 2015, 49 (03) : 638 - 659
  • [29] Cumulative distribution function estimation under interval censoring case 1
    Brunel, Elodie
    Comte, Fabienne
    ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 : 1 - 24
  • [30] Geometric Sensitivity Measures for Bayesian Nonparametric Density Estimation Models
    Saha, Abhijoy
    Kurtek, Sebastian
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2019, 81 (01): : 104 - 143