Low RF-Complexity Technologies to Enable Millimeter-Wave MIMO with Large Antenna Array for 5G Wireless Communications

被引:173
作者
Gao, Xinyu [1 ]
Dai, Linglong [1 ]
Sayeed, Akbar M. [2 ]
机构
[1] Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Beijing, Peoples R China
[2] Univ Wisconsin, Elect & Comp Engn, Madison, WI 53706 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
BEAMSPACE-MIMO; SYSTEMS; SELECTION;
D O I
10.1109/MCOM.2018.1600727
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
mmWave MIMO with large antenna array has attracted considerable interest from the academic and industry communities, as it can provide larger bandwidth and higher spectrum efficiency. However, with hundreds of antennas, the number of RF chains required by mmWave MIMO is also huge, leading to unaffordable hardware cost and power consumption in practice. In this article, we investigate low RF-complexity technologies to solve this bottleneck. We first review the evolution of low RF-complexity technologies from microwave frequencies to mmWave frequencies. Then, we discuss two promising low RF-complexity technologies for mmWave MIMO systems in detail, that is PAHP and LAHP, including their principles, advantages, challenges, and recent results. We compare the performance of these two technologies to draw some insights about how they can be deployed in practice. Finally, we conclude this article and point out some future research directions in this area.
引用
收藏
页码:211 / 217
页数:7
相关论文
共 15 条
[1]   Limited Feedback Hybrid Precoding for Multi-User Millimeter Wave Systems [J].
Alkhateeb, Ahmed ;
Leus, Geert ;
Heath, Robert W., Jr. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2015, 14 (11) :6481-6494
[2]   Low RF-Complexity Millimeter-Wave Beamspace-MIMO Systems by Beam Selection [J].
Amadori, Pierluigi V. ;
Masouros, Christos .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2015, 63 (06) :2212-2223
[3]  
[Anonymous], 2016, mmWave Massive MIMO: A Paradigm for 5G
[4]  
[Anonymous], P CISS MAR
[5]   Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels [J].
Bajwa, Waheed U. ;
Haupt, Jarvis ;
Sayeed, Akbar M. ;
Nowak, Robert .
PROCEEDINGS OF THE IEEE, 2010, 98 (06) :1058-1076
[6]   Beamspace MIMO for Millimeter-Wave Communications: System Architecture, Modeling, Analysis, and Measurements [J].
Brady, John ;
Behdad, Nader ;
Sayeed, Akbar M. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (07) :3814-3827
[7]   Spatially Sparse Precoding in Millimeter Wave MIMO Systems [J].
El Ayach, Omar ;
Rajagopal, Sridhar ;
Abu-Surra, Shadi ;
Pi, Zhouyue ;
Heath, Robert W., Jr. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2014, 13 (03) :1499-1513
[8]   Energy-Efficient Hybrid Analog and Digital Precoding for MmWave MIMO Systems With Large Antenna Arrays [J].
Gao, Xinyu ;
Dai, Linglong ;
Han, Shuangfeng ;
I, Chih-Lin ;
Heath, Robert W., Jr. .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2016, 34 (04) :998-1009
[9]   Near-Optimal Beam Selection for Beamspace MmWave Massive MIMO Systems [J].
Gao, Xinyu ;
Dai, Linglong ;
Chen, Zhijie ;
Wang, Zhaocheng ;
Zhang, Zhijun .
IEEE COMMUNICATIONS LETTERS, 2016, 20 (05) :1054-1057
[10]   An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems [J].
Heath, Robert W., Jr. ;
Gonzalez-Prelcic, Nuria ;
Rangan, Sundeep ;
Roh, Wonil ;
Sayeed, Akbar M. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (03) :436-453