Bacterial symbionts in agricultural systems provide a strategic source for antibiotic discovery

被引:72
作者
Ramadhar, Timothy R. [1 ]
Beemelmanns, Christine [1 ]
Currie, Cameron R. [2 ]
Clardy, Jon [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
[2] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
agriculture; antibiotics; bacteria; fungus farming; insects; multilateral symbiosis; natural products; FUNGUS-GROWING TERMITES; POLYCYCLIC TETRAMATE MACROLACTAMS; ABSOLUTE-CONFIGURATION; STREPTOMYCES; ANTS; SPECIFICITY; MUTUALISM; EVOLUTION; NESTS; ACIDS;
D O I
10.1038/ja.2013.77
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
As increased antibiotic resistance erodes the efficacy of currently used drugs, the need for new candidates with therapeutic potential grows. Although the majority of antibiotics in clinical use originated from natural products, mostly from environmental actinomycetes, high rediscovery rates, among other factors, have diminished the enthusiasm for continued exploration of this historically important source. Several well-studied insect agricultural systems have bacterial symbionts that have evolved to produce small molecules that suppress environmental pathogens. These molecules represent an underexplored reservoir of potentially useful antibiotics. This report describes the multilateral symbioses common to insect agricultural systems, the general strategy used for antibiotic discovery and pertinent examples from three farming systems: fungus-farming ants, southern pine beetles (SPBs) and fungus-growing termites.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 77 条
[1]   The evolution of fungus-growing termites and their mutualistic fungal symbionts [J].
Aanen, DK ;
Eggleton, P ;
Rouland-Lefèvre, C ;
Guldberg-Froslev, T ;
Rosendahl, S ;
Boomsma, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (23) :14887-14892
[2]   As you reap, so shall you sow: coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi [J].
Aanen, Duur K. .
BIOLOGY LETTERS, 2006, 2 (02) :209-212
[3]   DOLASTATIN-15, A POTENT ANTIMITOTIC DEPSIPEPTIDE DERIVED FROM DOLABELLA-AURICULARIA - INTERACTION WITH TUBULIN AND EFFECTS ON CELLULAR MICROTUBULES [J].
BAI, R ;
FRIEDMAN, SJ ;
PETTIT, GR ;
HAMEL, E .
BIOCHEMICAL PHARMACOLOGY, 1992, 43 (12) :2637-2645
[4]   Marcel Faber Roundtable: Is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? [J].
Baltz, Richard H. .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2006, 33 (07) :507-513
[5]   High-throughput Plasmodium falciparum growth assay for malaria drug discovery [J].
Baniecki, Mary Lynn ;
Wirth, Dyann F. ;
Clardy, Jon .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2007, 51 (02) :716-723
[6]   A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus [J].
Barke, Joerg ;
Seipke, Ryan F. ;
Grueschow, Sabine ;
Heavens, Darren ;
Drou, Nizar ;
Bibb, Mervyn J. ;
Goss, Rebecca J. M. ;
Yu, Douglas W. ;
Hutchings, Matthew I. .
BMC BIOLOGY, 2010, 8
[7]   Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria [J].
Blodgett, Joshua A. V. ;
Oh, Dong-Chan ;
Cao, Shugeng ;
Currie, Cameron R. ;
Kolter, Roberto ;
Clardy, Jon .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (26) :11692-11697
[8]   Insects: True Pioneers in Anti-Infective Therapy and What We Can Learn from Them [J].
Bode, Helge B. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (35) :6394-6396
[9]   Symbiont-mediated protection in insect hosts [J].
Brownlie, Jeremy C. ;
Johnson, Karyn N. .
TRENDS IN MICROBIOLOGY, 2009, 17 (08) :348-354
[10]  
Bugni TS, 2010, RSC BIOMOL SCI, P272