Thermal conductivity enhancement in Cu/diamond composites with surface-roughened diamonds

被引:34
作者
Wang, Hong-yu [1 ,2 ]
Tian, Jian [1 ]
机构
[1] Changchun Univ Sci & Technol, Clean Energy Technol Lab, Changchun 130022, Peoples R China
[2] Jilin Jianzhu Univ, Sch Sci & Engn Commun, Changchun 130118, Peoples R China
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2014年 / 116卷 / 01期
关键词
MATRIX COMPOSITES; AL/DIAMOND COMPOSITES; POWDER-METALLURGY; MANAGEMENT; STABILITY;
D O I
10.1007/s00339-013-8117-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cu/diamond composites have potential as a heat spreading material in small-scale devices. In this study, we show that the use of surface-roughened diamonds obtained by heat treatment under N-2 atmosphere and subsequently coated with a thin layer of Ti coating is a feasible method to effectively improve the interfacial bonding and thermal conductivity of Cu/diamond composites. The diamond surface state and prepared composites were investigated by the combination of X-ray diffraction, Raman spectroscopy and microstructure analysis. It is found that the surface-roughened diamonds are in favor of the formation of effective chemical bonds between diamonds and Ti coating through the formation of thin TiC layer and simultaneously provide increased Cu/diamond contact area, which are beneficial to largely decrease the interfacial thermal resistance and thus to greatly enhance the thermal conductivity of Cu/diamond composites.
引用
收藏
页码:265 / 271
页数:7
相关论文
共 32 条
[1]   High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix [J].
Abyzov, Andrey M. ;
Kidalov, Sergey V. ;
Shakhov, Fedor M. .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (05) :1424-1438
[2]   Interface formation in infiltrated Al(Si)/diamond composites [J].
Beffort, O. ;
Khalid, F. A. ;
Weber, L. ;
Ruch, P. ;
Klotz, U. E. ;
Meier, S. ;
Kleiner, S. .
DIAMOND AND RELATED MATERIALS, 2006, 15 (09) :1250-1260
[3]   On the thermal and chemical stability of diamond during processing of Al/diamond composites by liquid metal infiltration (squeeze casting) [J].
Beffort, O ;
Vaucher, S ;
Khalid, FA .
DIAMOND AND RELATED MATERIALS, 2004, 13 (10) :1834-1843
[4]   THE EFFECTIVE CONDUCTIVITY OF COMPOSITES WITH IMPERFECT THERMAL CONTACT AT CONSTITUENT INTERFACES [J].
BENVENISTE, Y ;
MILOH, T .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1986, 24 (09) :1537-1552
[6]   On the thermal conductivity of Cu-Zr/diamond composites [J].
Chu, Ke ;
Jia, Chengchang ;
Guo, Hong ;
Li, Wensheng .
MATERIALS & DESIGN, 2013, 45 :36-42
[7]   Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles [J].
Chu, Ke ;
Liu, Zhaofang ;
Jia, Chengchang ;
Chen, Hui ;
Liang, Xuebing ;
Gao, Wenjia ;
Tian, Wenhuai ;
Guo, Hong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 490 (1-2) :453-458
[8]   Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications [J].
Chu, Ke ;
Wu, Qingying ;
Jia, Chengchang ;
Liang, Xuebing ;
Nie, Junhui ;
Tian, Wenhuai ;
Gai, Guosheng ;
Guo, Hong .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (02) :298-304
[9]   Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance [J].
Chu, Ke ;
Jia, Chengchang ;
Liang, Xuebing ;
Chen, Hui ;
Gao, Wenjia ;
Guo, Hong .
MATERIALS & DESIGN, 2009, 30 (10) :4311-4316
[10]   The thermal conductivity of pressure infiltrated SiCp/Al composites with various size distributions: Experimental study and modeling [J].
Chu, Ke ;
Jia, Chengchang ;
Liang, Xuebing ;
Chen, Hui ;
Guo, Hong .
MATERIALS & DESIGN, 2009, 30 (09) :3497-3503