On the compactness of hypersurfaces with finite total curvature via mean curvature flow

被引:0
作者
Cao, Shunjuan [1 ,2 ]
Zhao, Entao [3 ]
机构
[1] Zhejiang Agr & Forestry Univ, Dept Math, Linan 311300, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[3] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypersurfaces; Mean curvature flow; Compactness; Finite total curvature; RICCI CURVATURE; RIEMANNIAN-MANIFOLDS; SUBMANIFOLDS; THEOREMS;
D O I
10.1016/j.geomphys.2020.103857
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a complete hypersurface in the Euclidean space, we assume that the second fundamental form is bounded and the mean curvature is bounded from below by a positive constant. We prove that if the L-p-norm of the trace-free second fundamental form for some p >= 2 is finite, then the hypersurface is compact. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 28 条
[1]   A THEOREM OF MYERS [J].
AMBROSE, W .
DUKE MATHEMATICAL JOURNAL, 1957, 24 (03) :345-348
[2]  
[Anonymous], 2006, GRADUATE STUDIES MAT
[3]   Complete hypersurfaces with constant mean curvature and finite total curvature [J].
Berard, P ;
Do Carmo, M ;
Santos, W .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1998, 16 (03) :273-290
[4]  
Berard P., 1999, MAT CONT, V17, P77
[5]  
Brendle S., 2009, Geometry, Analysis, and Algebraic Geometry: Forty Years of the Journal of Differential Geometry, Volume13 of Survey in Differential Geometry, VXIII, P49
[6]   ON RICCI CURVATURE AND GEODESICS [J].
CALABI, E .
DUKE MATHEMATICAL JOURNAL, 1967, 34 (04) :667-&
[7]  
Chen BL, 2007, COMMUN ANAL GEOM, V15, P435
[8]   Complete Riemannian manifolds with pointwise pinched curvature [J].
Chen, BL ;
Zhu, XP .
INVENTIONES MATHEMATICAE, 2000, 140 (02) :423-452
[9]   Smoothing Riemannian metrics with Ricci curvature bounds [J].
Dai, XZ ;
Wei, GF ;
Ye, RG .
MANUSCRIPTA MATHEMATICA, 1996, 90 (01) :49-61
[10]  
do Carmo M, 2019, COMMUN ANAL GEOM, V27, P1251