PAHSS-PTS ALTERNATING SPLITTING ITERATIVE METHODS FOR NONSINGULAR SADDLE POINT PROBLEMS

被引:0
作者
Li, Jingtao [1 ,2 ]
Ma, Chengfeng [1 ,2 ]
机构
[1] Fujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Fujian, Peoples R China
[2] Fujian Normal Univ, FJKLMAA, Fuzhou 350117, Fujian, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2019年 / 9卷 / 03期
基金
美国国家科学基金会;
关键词
Saddle point problems; PAHSS-PTS alternating splitting; iterative methods; convergence analysis; numerical experiment; FOURIER COLLOCATION METHODS; UZAWA METHODS; BIFURCATION;
D O I
10.11948/2156-907X.20170183
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose the PAHSS-PTS alternating splitting iterative methods for nonsingular saddle point problems. Convergence properties of the proposed methods are studied and corresponding convergence results are given under some suitable conditions. Numerical experiments are presented to confirm the theoretical results, which impliy that PAHSS-PTS iterative methods are effective and feasible.
引用
收藏
页码:829 / 839
页数:11
相关论文
共 28 条
[1]  
[Anonymous], 1958, STUD LINEAR NONLINEA
[2]  
[Anonymous], 2018, J DIFFER EQUATIONS
[3]  
[Anonymous], 1971, ITERATIVE SOLUTION L
[4]   On parameterized inexact Uzawa methods for generalized saddle point problems [J].
Bai, Zhong-Zhi ;
Wang, Zeng-Qi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) :2900-2932
[5]  
Bai ZZ, 2007, IMA J NUMER ANAL, V27, P1, DOI [10.1093/imanum/drl017, 10.1093/imanum/dr1017]
[6]   On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems [J].
Bai, Zhong-Zhi .
COMPUTING, 2010, 89 (3-4) :171-197
[7]   Optimal parameters in the HSS-like methods for saddle-point problems [J].
Bai, Zhong-Zhi .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (06) :447-479
[8]   On generalized successive overrelaxation methods for augmented linear systems [J].
Bai, ZZ ;
Parlett, BN ;
Wang, ZQ .
NUMERISCHE MATHEMATIK, 2005, 102 (01) :1-38
[9]   Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Pan, JY .
NUMERISCHE MATHEMATIK, 2004, 98 (01) :1-32
[10]  
Benzi M, 2005, ACTA NUMER, V14, P1, DOI 10.1017/S0962492904000212