On Type I Singularities of the Local Axi-Symmetric Solutions of the Navier-Stokes Equations

被引:67
作者
Seregin, G. [1 ]
Sverak, V. [2 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX1 3LB, England
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
Axial symmetry; Navier-Stokes equations; Regularity; SUITABLE WEAK SOLUTIONS; LIOUVILLE-TYPE THEOREMS; SELF-SIMILAR SOLUTIONS; SUPERLINEAR PROBLEMS; ELLIPTIC-EQUATIONS; PARTIAL REGULARITY;
D O I
10.1080/03605300802683687
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Local regularity of axially symmetric solutions to the Navier-Stokes equations is studied. It is shown that under certain natural assumptions there are no singularities of Type I.
引用
收藏
页码:171 / 201
页数:31
相关论文
共 29 条
[1]  
[Anonymous], 1967, TRANSLATIONS MATH MO
[2]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[3]  
CHEN CC, MATHAP0701796
[4]  
CHEN CC, ARXIV07094230
[5]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[6]   EXISTENCE OF REGULAR SOLUTIONS TO THE STATIONARY NAVIER-STOKES EQUATIONS [J].
FREHSE, J ;
RUZICKA, M .
MATHEMATISCHE ANNALEN, 1995, 302 (04) :699-717
[7]  
KOCH G, ARXIV07093599
[8]  
Ladyzenskaja O. A., 1968, Zap. Naucn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI), V7, P155
[9]  
Ladyzhenskaya O., 1968, AM MATH SOC
[10]   On Partial Regularity of Suitable Weak Solutions to the Three-Dimensional Navier-Stokes equations [J].
Ladyzhenskaya, O. A. ;
Seregin, G. A. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 1999, 1 (04) :356-387