Simple Continuous High-Pressure Hydrogen Production and Separation System from Formic Acid under Mild Temperatures

被引:77
作者
Iguchi, Masayuki [1 ,5 ]
Himeda, Yuichiro [2 ,5 ]
Manaka, Yuichi [3 ,5 ]
Matsuoka, Koichi [4 ,5 ]
Kawanami, Hajime [1 ,5 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Dept Mat & Chem, Res Inst Chem Proc Technol, Sendai, Miyagi 9838551, Japan
[2] Natl Inst Adv Ind Sci & Technol, Environm & Energy Dept, Res Ctr Photovolta, Tsukuba, Ibaraki 3058568, Japan
[3] Natl Inst Adv Ind Sci & Technol, Environm & Energy Dept, Renewable Energy Res Ctr, Fukushima 9630298, Japan
[4] Natl Inst Adv Ind Sci & Technol, Environm & Energy Dept, Res Inst Energy Frontier, Tsukuba, Ibaraki 3058568, Japan
[5] Japan Sci & Technol Agcy, Core Res Evolut Sci & Technol, Tokyo 1020076, Japan
关键词
decomposition; formic acid; gas-liquid separation; high-pressure hydrogen; iridium catalyst; ROOM-TEMPERATURE; IRIDIUM CATALYST; CARBON-DIOXIDE; DECOMPOSITION; GENERATION; DEHYDROGENATION; STORAGE; EQUILIBRIA; COMPLEXES; EXCHANGE;
D O I
10.1002/cctc.201501296
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple and continuous high-pressure (>120MPa) hydrogen production system was developed by the selective decomposition of formic acid at 80 degrees C using an iridium complex as a catalyst, with a view to its application in future hydrogen fuel filling stations. The system is devoid of any compressing system. The described method can provide high-pressure H-2 with 85% purity after applying an effective gas-liquid separation process to separate the generated gas obtained from the decomposition of formic acid (H-2/CO2=1:1). The efficiency of the catalyst lies with its high turnover frequency (1800h(-1) at 40MPa) to produce high-pressure H-2 with a good lifetime of >40h. Interestingly, only very low levels carbon monoxide (less than 6volppm) were detected in the generated gas, even at 120MPa.
引用
收藏
页码:886 / 890
页数:5
相关论文
共 38 条
[1]   Automotive hydrogen fuelling stations: An international review [J].
Alazemi, Jasem ;
Andrews, John .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 48 :483-499
[2]  
[Anonymous], 2008, ANGEW CHEM-GER EDIT
[3]   The Hydrogen Issue [J].
Armaroli, Nicola ;
Balzani, Vincenzo .
CHEMSUSCHEM, 2011, 4 (01) :21-36
[4]   Efficient Subnanometric Gold-Catalyzed Hydrogen Generation via Formic Acid Decomposition under Ambient Conditions [J].
Bi, Qng-Yuan ;
Du, Xian-Long ;
Liu, Yong-Mei ;
Cao, Yong ;
He, He-Yong ;
Fan, Kang-Nian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (21) :8926-8933
[5]   Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst [J].
Boddien, Albert ;
Mellmann, Doerthe ;
Gaertner, Felix ;
Jackstell, Ralf ;
Junge, Henrik ;
Dyson, Paul J. ;
Laurenczy, Gabor ;
Ludwig, Ralf ;
Beller, Matthias .
SCIENCE, 2011, 333 (6050) :1733-1736
[6]   A computational study on the decomposition of formic acid catalyzed by (H2O)x, x=0-3:: Comparison of the gas-phase and aqueous-phase results [J].
Chen, Hsin-Tsung ;
Chang, Jee-Gong ;
Chen, Hui-Lung .
JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (35) :8093-8099
[7]   Hydrogen storage: beyond conventional methods [J].
Dalebrook, Andrew F. ;
Gan, Weijia ;
Grasemann, Martin ;
Moret, Severine ;
Laurenczy, Gabor .
CHEMICAL COMMUNICATIONS, 2013, 49 (78) :8735-8751
[8]  
Eberle U., 2009, Angew. Chemie, V121, P6732
[9]   Chemical and Physical Solutions for Hydrogen Storage [J].
Eberle, Ulrich ;
Felderhoff, Michael ;
Schueth, Ferdi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (36) :6608-6630
[10]   Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage? [J].
Enthaler, Stephan ;
von Langermann, Jan ;
Schmidt, Thomas .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (09) :1207-1217