Duality, quantum skyrmions, and the stability of a SO(3) two-dimensional quantum spin glass

被引:2
作者
da Conceicao, C. M. S. [1 ]
Marino, E. C. [2 ]
机构
[1] Univ Estado Rio de Janeiro, Dept Fis Teor, BR-20550013 Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 06期
关键词
magnetic structure; phase diagrams; skyrmions; SO(3) groups; spin glasses; topology; CONTINUOUS SYMMETRY GROUP; LONG-RANGE ORDER; SYSTEMS; DESTRUCTION; OPERATOR;
D O I
10.1103/PhysRevB.80.064422
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum topological excitations (skyrmions) are analyzed from the point of view of their duality to spin excitations in the different phases of a disordered two-dimensional, short-range interacting, SO(3) quantum magnetic system of Heisenberg type. The phase diagram displays all the phases, which are allowed by the duality relation. We study the large-distance behavior of the two-point correlation function of quantum skyrmions in each of these phases and, out of this, extract information about the energy spectrum and nontriviality of these excitations. The skyrmion correlators present a power-law decay in the spin-glass (SG) phase, indicating that these quantum topological excitations are gapless but nontrivial in this phase. The SG phase is dual to the AF phase, in the sense that topological and spin excitations are, respectively, gapless in each of them. The Berezinskii-Kosterlitz-Thouless mechanism guarantees the survival of the SG phase at T not equal 0, whereas the AF phase is washed out to T=0 by the quantum fluctuations. Our results suggest a more symmetric way of characterizing a SG phase: one for which both the order and disorder parameters vanish, namely, <<sigma >>=0 and <<mu >>=0, where sigma is the spin and mu is the topological excitation operators.
引用
收藏
页数:9
相关论文
共 24 条
[1]  
BEREZINSKII VL, 1972, SOV PHYS JETP-USSR, V34, P610
[2]  
BEREZINSKII VL, 1971, SOV PHYS JETP-USSR, V32, P493
[3]   SPIN-GLASSES - EXPERIMENTAL FACTS, THEORETICAL CONCEPTS, AND OPEN QUESTIONS [J].
BINDER, K ;
YOUNG, AP .
REVIEWS OF MODERN PHYSICS, 1986, 58 (04) :801-976
[4]   LOWER CRITICAL DIMENSION OF ISING SPIN-GLASSES - A NUMERICAL STUDY [J].
BRAY, AJ ;
MOORE, MA .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (18) :L463-L468
[5]   LOW-TEMPERATURE BEHAVIOR OF TWO-DIMENSIONAL QUANTUM ANTIFERROMAGNETS [J].
CHAKRAVARTY, S ;
HALPERIN, BI ;
NELSON, DR .
PHYSICAL REVIEW LETTERS, 1988, 60 (11) :1057-1060
[6]   TWO-DIMENSIONAL QUANTUM HEISENBERG-ANTIFERROMAGNET AT LOW-TEMPERATURES [J].
CHAKRAVARTY, S ;
HALPERIN, BI ;
NELSON, DR .
PHYSICAL REVIEW B, 1989, 39 (04) :2344-2371
[7]   Stable mean-field solution of a short-range interacting SO(3) quantum Heisenberg spin glass [J].
da Conceicao, C. M. S. ;
Marino, E. C. .
PHYSICAL REVIEW LETTERS, 2008, 101 (03)
[8]   Quantum field theory solution for a short-range interacting SO(3) quantum spin-glass [J].
da Conceicao, C. M. S. ;
Marino, E. C. .
NUCLEAR PHYSICS B, 2009, 820 (03) :565-592
[9]   THEORY OF SPIN GLASSES [J].
EDWARDS, SF ;
ANDERSON, PW .
JOURNAL OF PHYSICS F-METAL PHYSICS, 1975, 5 (05) :965-974
[10]  
Gradshteyn I. S., 2014, Table of Integrals, Series, and Products