Construction of a high-density linkage map and fine mapping of QTL for growth in Asian seabass

被引:85
作者
Wang, Le [1 ]
Wan, Zi Yi [1 ]
Bai, Bin [1 ]
Huang, Shu Qing [1 ]
Chua, Elaine [1 ]
Lee, May [1 ]
Pang, Hong Yan [1 ]
Wen, Yan Fei [1 ]
Liu, Peng [1 ]
Liu, Feng [1 ]
Sun, Fei [1 ]
Lin, Grace [1 ]
Ye, Bao Qing [1 ]
Yue, Gen Hua [1 ,2 ,3 ]
机构
[1] Natl Univ Singapore, Temasek Life Sci Lab, Res Link 1, Singapore 117604, Singapore
[2] Natl Univ Singapore, Dept Biol Sci, Singapore 117543, Singapore
[3] Nanyang Technol Univ, Sch Biol Sci, Singapore 637551, Singapore
基金
新加坡国家研究基金会;
关键词
HIGH-RESOLUTION LINKAGE; LATES-CALCARIFER; SNP DISCOVERY; GENETIC-MAP; DE-NOVO; GENOME; IDENTIFICATION; TRANSCRIPTOME; RESISTANCE; TRAITS;
D O I
10.1038/srep16358
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A high-density genetic map is essential for comparative genomic studies and fine mapping of QTL, and can also facilitate genome sequence assembly. Here, a high density genetic map of Asian seabass was constructed with 3321 SNPs generated by sequencing 144 individuals in a F-2 family. The length of the map was 1577.67 cM with an average marker interval of 0.52 cM. A high level of genomic synteny among Asian seabass, European seabass, Nile tilapia and stickleback was detected. Using this map, one genome-wide significant and five suggestive QTL for growth traits were detected in six linkage groups (i.e. LG4, LG5, LG11, LG13, LG14 and LG15). These QTL explained 10.5-16.0% of phenotypic variance. A candidate gene, ACOX1 within the significant QTL on LG5 was identified. The gene was differentially expressed between fast- and slow-growing Asian seabass. The high-density SNP-based map provides an important tool for fine mapping QTL in molecular breeding and comparative genome analysis.
引用
收藏
页数:10
相关论文
共 48 条
[1]   Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques [J].
Aljanabi, SM ;
Martinez, I .
NUCLEIC ACIDS RESEARCH, 1997, 25 (22) :4692-4693
[2]   Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers [J].
Baird, Nathan A. ;
Etter, Paul D. ;
Atwood, Tressa S. ;
Currey, Mark C. ;
Shiver, Anthony L. ;
Lewis, Zachary A. ;
Selker, Eric U. ;
Cresko, William A. ;
Johnson, Eric A. .
PLOS ONE, 2008, 3 (10)
[3]   Genomics tools for QTL analysis and gene discovery [J].
Borevitz, JO ;
Chory, J .
CURRENT OPINION IN PLANT BIOLOGY, 2004, 7 (02) :132-136
[4]   Exploring the new world of the genome with DNA microarrays [J].
Brown, PO ;
Botstein, D .
NATURE GENETICS, 1999, 21 (Suppl 1) :33-37
[5]   A second generation genetic linkage map of Japanese flounder (Paralichthys olivaceus) [J].
Castano-Sanchez, Cecilia ;
Fuji, Kanako ;
Ozaki, Akiyuki ;
Hasegawa, Osamu ;
Sakamoto, Takashi ;
Morishima, Kagayaki ;
Nakayama, Ichiro ;
Fujiwara, Atsushi ;
Masaoka, Tetsuji ;
Okamoto, Hiroyuki ;
Hayashida, Kengo ;
Tagami, Michihira ;
Kawai, Jun ;
Hayashizaki, Yoshihide ;
Okamoto, Nobuaki .
BMC GENOMICS, 2010, 11
[6]   Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences [J].
Catchen, Julian M. ;
Amores, Angel ;
Hohenlohe, Paul ;
Cresko, William ;
Postlethwait, John H. .
G3-GENES GENOMES GENETICS, 2011, 1 (03) :171-182
[7]   A microsatellite linkage map of the European sea bass Dicentrarchus labrax L. [J].
Chistiakov, DA ;
Hellemans, B ;
Haley, CS ;
Law, AS ;
Tsigenopoulos, CS ;
Kotoulas, G ;
Bertotto, D ;
Libertini, A ;
Volckaert, FAM .
GENETICS, 2005, 170 (04) :1821-1826
[8]   Blast2GO:: a universal tool for annotation, visualization and analysis in functional genomics research [J].
Conesa, A ;
Götz, S ;
García-Gómez, JM ;
Terol, J ;
Talón, M ;
Robles, M .
BIOINFORMATICS, 2005, 21 (18) :3674-3676
[9]   Genome-wide genetic marker discovery and genotyping using next-generation sequencing [J].
Davey, John W. ;
Hohenlohe, Paul A. ;
Etter, Paul D. ;
Boone, Jason Q. ;
Catchen, Julian M. ;
Blaxter, Mark L. .
NATURE REVIEWS GENETICS, 2011, 12 (07) :499-510
[10]  
Dent R, 2012, PLOS ONE, V7, DOI [10.1371/journal.pone.0036889, 10.1371/journal.pone.0037135]