Nonlinear Robust Controller Tuning Based on Artificial Neural Network

被引:0
|
作者
Chen Yafeng [1 ]
Li Donghai [2 ]
Lao Dazhong [1 ]
机构
[1] Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China
[2] Tsinghua Univ, Dept Thermal Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
关键词
Artificial Neural Network; Nonlinear Robust Controller; Parameters Tuning; Monte-Carlo Experiment;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The tuning method of nonlinear robust controller (NRC) for plants based on artificial neural network (ANN) is proposed, employing the nonlinear mapping features of ANN and ITAE, rise time and overshoot as the control performance criteria. The NRC control tuning rules are verified using Monte-Carlo experiments. The relationship between the parameters and stability of the control system is analyzed.
引用
收藏
页码:6056 / 6060
页数:5
相关论文
共 4 条
  • [1] MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS
    HORNIK, K
    STINCHCOMBE, M
    WHITE, H
    [J]. NEURAL NETWORKS, 1989, 2 (05) : 359 - 366
  • [2] Tomambe A, 1994, J DYNAMIC SYSTEMS ME, V116, P293
  • [3] Tornambe A, 1996, AUTOMATIC CONTROL IE, V41, P1517
  • [4] Robust PID controller tuning based on the heuristic Kalman algorithm
    Toscano, Rosario
    Lyonnet, Patrick
    [J]. AUTOMATICA, 2009, 45 (09) : 2099 - 2106