High-confinement waveguides for mid-IR devices

被引:9
作者
Holmström, P [1 ]
机构
[1] Royal Inst Technol, Dept Elect, Lab Photon & Microwave Engn, S-16440 Kista, Sweden
来源
PHYSICA E | 2000年 / 7卷 / 1-2期
关键词
waveguide; mid-infrared; plasma effects; surface plasmons;
D O I
10.1016/S1386-9477(99)00308-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We analyze the use of heavily doped semiconductor layers as a means to tightly confine Light. The very low refractive index (n approximate to 1) that is present just above the plasma frequency renders large index steps possible. Slab waveguide structures with InP or GaAs cladding layers doped to n(D) similar to 10(19) cm(-3) are analyzed in the mid-IR wavelength range, lambda = 4-15 mu m. The performance of the waveguide in terms of achieved overlap with an active region of a given thickness Versus the waveguide absorption, is compared to waveguides based on surface plasmons. The calculated results indicate that these plasma effect waveguides should be favourable in this respect for wavelengths lambda approximate to 6-10 mu m using heavily doped InP as a cladding, In GaAs efficient use of the plasma effect is limited to wavelengths lambda greater than or similar to 9 mu m. Guidelines for required doping levels are given. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:40 / 43
页数:4
相关论文
共 50 条
[41]   MOVPE growth of InAs quantum dots for mid-IR applications [J].
DENY S .
Transactions of Nonferrous Metals Society of China, 2006, (S1) :25-28
[42]   MOVPE growth of InAs quantum dots for mid-IR applications [J].
Tang Xiao-hong ;
Yin Zong-you ;
Du An-yan ;
Zhao Jing-hua ;
Deny, S. .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2006, 16 :S25-S28
[43]   Silicon Plasmonics On-Chip Mid-IR Gas Sensor [J].
Ayoub, Ahmad B. ;
Swillam, Mohamed A. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2018, 30 (10) :931-934
[44]   Extending KIDs to the Mid-IR for Future Space and Suborbital Observatories [J].
Perido, J. ;
Glenn, J. ;
Day, P. ;
Fyhrie, A. ;
Leduc, H. ;
Zmuidzinas, J. ;
McKenney, C. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (3-4) :696-703
[45]   Design and fabrication of GaSb/InGaAsSb/AlGaAsSb mid-IR photodetectors [J].
Piotrowski, TT ;
Piotrowska, A ;
Kamínska, E ;
Piskorski, M ;
Papis, E ;
Golaszewska, K ;
Katcki, J ;
Ratajczak, J ;
Adamczewska, J ;
Wawro, A ;
Piotrowski, J ;
Orman, Z ;
Pawluczyk, J ;
Nowak, Z .
INTERNATIONAL CONFERENCE ON SOLID STATE CRYSTALS 2000: EPILAYERS AND HETEROSTRUCTURES IN OPTOELECTRONICS AND SEMICONDUCTOR TECHNOLOGY, 2001, 4413 :339-344
[46]   Ultra-fast bandgap photonics in mid-IR wavelengths [J].
Chowdhury, Enam ;
Kafka, Kyle R. P. ;
Austin, Drake R. ;
Werner, Kevin ;
Talisa, Noah ;
Ma, Boquin ;
Blaga, Cosmin I. ;
Dimauro, Louis F. ;
Li, Hui ;
Yi, Allen .
ULTRAFAST BANDGAP PHOTONICS, 2016, 9835
[47]   Recent progress in development of mid-IR interband cascade lasers [J].
Yang, RQ ;
Hill, CJ ;
Wong, CM .
NOVEL IN-PLANE SEMICONDUCTOR LASERS III, 2004, 5365 :218-227
[48]   Extending KIDs to the Mid-IR for Future Space and Suborbital Observatories [J].
J. Perido ;
J. Glenn ;
P. Day ;
A. Fyhrie ;
H. Leduc ;
J. Zmuidzinas ;
C. McKenney .
Journal of Low Temperature Physics, 2020, 199 :696-703
[49]   Progress with the design and development of MIRI, the mid-IR instrument for JWST [J].
Wright, G. S. ;
Rieke, G. ;
Boeker, T. ;
Colina, L. ;
van Dishoeck, E. ;
Driggers, P. ;
Friedman, S. ;
Glasse, A. ;
Goodson, G. ;
Greene, T. ;
Guedel, M. ;
Henning, T. ;
Lagage, P-O. ;
Lorenzo-Alvarez, J. ;
Meixner, M. ;
Norgaard-Nielsen, H. ;
Oloffson, G. ;
Ray, T. ;
Ressler, M. ;
Sukhatme, K. ;
Thatcher, J. ;
Waelkens, C. ;
Wright, D. .
SPACE TELESCOPES AND INSTRUMENTATION 2010: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2010, 7731
[50]   Development of Mid-IR Ring Resonators Using Vernier Effect [J].
Chang, Yuhua ;
Ho, Chong Pei ;
Dong, Bowei ;
Li, Bo ;
Yang, Bin ;
Zhou, Guangya ;
Lee, Chengkuo .
2018 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), 2018, :50-51