Infinitesimally Helicoidal Motions with Fixed Pitch of Oriented Geodesics of a Space Form

被引:1
作者
Anarella, Mateo [1 ]
Salvai, Marcos [2 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200b,Box 2400, B-3001 Leuven, Belgium
[2] Univ Nacl Cordoba, FAMAF, Av Medina Allende S-N,Ciudad Univ,CP X5000HUA, Cordoba, Argentina
[3] Consejo Nacl Invest Cient & Tecn, CIEM, Av Medina Allende S-N,Ciudad Univ,CP X5000HUA, Cordoba, Argentina
关键词
Control system; Space of oriented geodesics; Helicoid; Oxford problem; Hopf fibration; Jacobi field; GEOMETRY; LINES;
D O I
10.1007/s10440-022-00493-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be the manifold of all (unparametrized) oriented lines of R-3. We study the controllability of the control system in G given by the condition that a curve in G describes at each instant, at the infinitesimal level, an helicoid with prescribed angular speed alpha. Actually, we pose the analogous more general problem by means of a control system on the manifold G(kappa) of all the oriented complete geodesics of the three dimensional space form of curvature kappa: R-3 for kappa = 0, S-3 for kappa = 1 and hyperbolic 3-space for kappa = -1. We obtain that the system is controllable if and only if alpha(2) not equal kappa. In the spherical case with alpha = +/- 1, an admissible curve remains in the set of fibers of a fixed Hopf fibration of S-3. We also address and solve a sort of Kendall's (aka Oxford) problem in this setting: Finding the minimum number of switches of piecewise continuous curves joining two arbitrary oriented lines, with pieces in some distinguished families of admissible curves.
引用
收藏
页数:19
相关论文
共 18 条
[1]  
Agrachev AA, 2008, LECT NOTES MATH, V1932, P1
[2]   Feedback-invariant optimal control theory and differential geometry - I. Regular extremals [J].
Agrachev A.A. ;
Gamkrelidze R.V. .
Journal of Dynamical and Control Systems, 1997, 3 (3) :343-389
[3]  
Beem JK, 1996, GEOMETRIAE DEDICATA, V59, P51
[4]   The rolling ball problem on the plane revisited [J].
Biscolla, Laura M. O. ;
Llibre, Jaume ;
Oliva, Waldyr M. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (04) :991-1003
[5]   ON THE SPACE OF ORIENTED GEODESICS OF HYPERBOLIC 3-SPACE [J].
Georgiou, Nikos ;
Guilfoyle, Brendan .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (04) :1183-1219
[6]   GREAT-CIRCLE FIBRATIONS OF THE 3-SPHERE [J].
GLUCK, H ;
WARNER, FW .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (01) :107-132
[7]  
Godoy Y, 2013, OSAKA J MATH, V50, P749
[8]   SUBMERSIONS, HAMILTONIAN SYSTEMS, AND OPTIMAL SOLUTIONS TO THE ROLLING MANIFOLDS PROBLEM [J].
Grong, Erlend .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (02) :536-566
[9]   An indefinite Kahler metric on the space of oriented lines [J].
Guilfoyle, B ;
Klingenberg, W .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 :497-509
[10]  
Hammersley J. M., 1983, London Math. Soc. Lecture Note Ser., V79, P112