Assessment of two DNA extraction kits for profiling poultry respiratory microbiota from multiple sample types

被引:13
作者
Abundo, Michael E. C. [1 ,2 ]
Ngunjiri, John M. [1 ]
Taylor, Kara J. M. [1 ]
Ji, Hana [1 ]
Ghorbani, Amir [1 ,2 ]
Mahesh, K. C. [1 ,2 ]
Weber, Bonnie P. [3 ]
Johnson, Timothy J. [3 ,4 ]
Lee, Chang-Won [1 ,2 ]
机构
[1] Ohio State Univ, Ohio Agr Res & Dev Ctr, Food Anim Hlth Res Program, Wooster, OH 44691 USA
[2] Ohio State Univ, Coll Vet Med, Dept Vet Prevent Med, Columbus, OH 43210 USA
[3] Univ Minnesota, Dept Vet & Biomed Sci, St Paul, MN 55108 USA
[4] Univ Minnesota, Midcent Res & Outreach Ctr, Willmar, MN USA
基金
美国食品与农业研究所;
关键词
RNA GENE DATABASE; DIVERSITY; QUALITY;
D O I
10.1371/journal.pone.0241732
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Characterization of poultry microbiota is becoming increasingly important due to the growing need for microbiome-based interventions to improve poultry health and production performance. However, the lack of standardized protocols for sampling, sample processing, DNA extraction, sequencing, and bioinformatic analysis can hinder data comparison between studies. Here, we investigated how the DNA extraction process affects microbial community compositions and diversity metrics in different chicken respiratory sample types including choanal and tracheal swabs, nasal cavity and tracheal washes, and lower respiratory lavage. We did a side-by-side comparison of the performances of Qiagen DNeasy blood and tissue (BT) and ZymoBIOMICS DNA Miniprep (ZB) kits. In general, samples extracted with the BT kit yielded higher concentrations of total DNA while those extracted with the ZB kit contained higher numbers of bacterial 16S rRNA gene copies per unit volume. Therefore, the samples were normalized to equal amounts of 16S rRNA gene copies prior to sequencing. For each sample type, all predominant bacterial taxa detected in samples extracted with one kit were present in replicate samples extracted with the other kit and did not show significant differences at the class level. However, a few differentially abundant shared taxa were observed at family and genus levels. Furthermore, between-kit differences in alpha and beta diversity metrics at the amplicon sequence variant level were statistically indistinguishable. Therefore, both kits perform similarly in terms of 16S rRNA gene-based poultry microbiome analysis for the sample types analyzed in this study.
引用
收藏
页数:19
相关论文
共 63 条
[1]  
Abundo MEC, 2020, AVIAN DIS, V64, P277, DOI 10.1637/aviandiseases-D-19-00200
[2]   A new method for non-parametric multivariate analysis of variance [J].
Anderson, MJ .
AUSTRAL ECOLOGY, 2001, 26 (01) :32-46
[3]  
[Anonymous], 2020, ZYMOBIOMICS DNA MINI
[4]  
[Anonymous], 2020, ZYMOBIOMICS MICROBIA
[5]  
[Anonymous], 2020, DNEASY BLOOD TISSUE
[6]   An Improved Method for High Quality Metagenomics DNA Extraction from Human and Environmental Samples [J].
Bag, Satyabrata ;
Saha, Bipasa ;
Mehta, Ojasvi ;
Anbumani, D. ;
Kumar, Naveen ;
Dayal, Mayanka ;
Pant, Archana ;
Kumar, Pawan ;
Saxena, Shruti ;
Allin, Kristine H. ;
Hansen, Torben ;
Arumugam, Manimozhiyan ;
Vestergaard, Henrik ;
Pedersen, Oluf ;
Pereira, Verima ;
Abraham, Philip ;
Tripathi, Reva ;
Wadhwa, Nitya ;
Bhatnagar, Shinjini ;
Prakash, Visvanathan Gnana ;
Radha, Venkatesan ;
Anjana, R. M. ;
Mohan, V. ;
Takeda, Kiyoshi ;
Kurakawa, Takashi ;
Nair, G. Balakrish ;
Das, Bhabatosh .
SCIENTIFIC REPORTS, 2016, 6
[7]   Review and re-analysis of domain-specific 16S primers [J].
Baker, GC ;
Smith, JJ ;
Cowan, DA .
JOURNAL OF MICROBIOLOGICAL METHODS, 2003, 55 (03) :541-555
[8]   Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2′s q2-feature-classifier plugin [J].
Bokulich, Nicholas A. ;
Kaehler, Benjamin D. ;
Rideout, Jai Ram ;
Dillon, Matthew ;
Bolyen, Evan ;
Knight, Rob ;
Huttley, Gavin A. ;
Caporaso, J. Gregory .
MICROBIOME, 2018, 6
[9]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[10]   The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies [J].
Brooks, J. Paul ;
Edwards, David J. ;
Harwich, Michael D., Jr. ;
Rivera, Maria C. ;
Fettweis, Jennifer M. ;
Serrano, Myrna G. ;
Reris, Robert A. ;
Sheth, Nihar U. ;
Huang, Bernice ;
Girerd, Philippe ;
Strauss, Jerome F., III ;
Jefferson, Kimberly K. ;
Buck, Gregory A. .
BMC MICROBIOLOGY, 2015, 15