Algebraic entropies of commuting endomorphisms of torsion abelian groups

被引:3
作者
Bis, Andrzej [1 ]
Dikranjan, Dikran [2 ]
Bruno, Anna Giordano [2 ]
Stoyanov, Luchezar [3 ]
机构
[1] Univ Lodz, Fac Math & Comp Sci, Stefana Banacha 22, PL-90238 Lodz, Poland
[2] Univ Udine, Dept Math Comp Sci & Phys, Via Sci 206, I-33100 Udine, Italy
[3] Univ Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, Australia
来源
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA | 2020年 / 144卷
关键词
Algebraic entropy; receptive entropy; regular system; abelian group; torsion abelian group; p-group;
D O I
10.4171/RSMUP/55
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For actions of m commuting endomorphisms of a torsion abelian group we compute the algebraic entropy and the algebraic receptive entropy, showing that the latter one takes finite positive values in many cases when the former one vanishes.
引用
收藏
页码:45 / 60
页数:16
相关论文
共 10 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]  
Bis A., TOPOLOGICAL ALGEBRAI
[3]   Algebraic entropy for amenable semigroup actions [J].
Dikranjan, Dikran ;
Fornasiero, Antongiulio ;
Giordano Bruno, Anna .
JOURNAL OF ALGEBRA, 2020, 556 :467-546
[4]   Entropy on abelian groups [J].
Dikranjan, Dikran ;
Giordano Bruno, Anna .
ADVANCES IN MATHEMATICS, 2016, 298 :612-653
[5]   ALGEBRAIC ENTROPY FOR ABELIAN GROUPS [J].
Dikranjan, Dikran ;
Goldsmith, Brendan ;
Salce, Luigi ;
Zanardo, Paolo .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (07) :3401-3434
[6]   GEOMETRIC ENTROPY OF FOLIATIONS [J].
GHYS, E ;
LANGEVIN, R ;
WALCZAK, P .
ACTA MATHEMATICA, 1988, 160 (1-2) :105-142
[7]   TOPOLOGICAL-ENTROPY OF GROUP AND SEMIGROUP ACTIONS [J].
HOFMANN, KH ;
STOJANOV, LN .
ADVANCES IN MATHEMATICS, 1995, 115 (01) :54-98
[8]   ENTROPY AND ISOMORPHISM THEOREMS FOR ACTIONS OF AMENABLE-GROUPS [J].
ORNSTEIN, DS ;
WEISS, B .
JOURNAL D ANALYSE MATHEMATIQUE, 1987, 48 :1-142
[9]   Algebraic entropy of amenable group actions [J].
Virili, Simone .
MATHEMATISCHE ZEITSCHRIFT, 2019, 291 (3-4) :1389-1417
[10]  
WEISS MD, 1975, MATH SYST THEORY, V8, P243, DOI 10.1007/BF01762672