Enhancement of bone consolidation using high-frequency pulsed electromagnetic short-waves and titanium implants coated with biomimetic composite embedded into PLA matrix: in vivo evaluation

被引:20
作者
Oltean-Dan, Daniel [1 ]
Dogaru, Gabriela-Bombonica [2 ]
Tomoaia-Cotisel, Maria [3 ,4 ]
Apostu, Dragos [1 ]
Mester, Alexandru [5 ]
Benea, Horea-Rares-Ciprian [1 ]
Paiusan, Mihai-Gheorghe [1 ]
Jianu, Elena-Mihaela [6 ]
Mocanu, Aurora [3 ]
Balint, Reka [3 ]
Popa, Catalin-Ovidiu [7 ]
Berce, Cristian [8 ]
Bodizs, Gyorgy-Istvan [9 ]
Toader, Alina-Mihaela [10 ]
Tomoaia, Gheorghe [1 ,4 ]
机构
[1] Iuliu Hatieganu Univ Med & Pharm, Dept Orthoped & Traumatol, 47 Gen Traian Mosoiu St, Cluj Napoca 400132, Romania
[2] Iuliu Hatieganu Univ Med & Pharm, Dept Med Rehabil, Cluj Napoca 400347, Romania
[3] Babes Bolyai Univ, Fac Chem & Chem Engn, Dept Chem Engn, Res Ctr Phys Chem, 11 Arany Janos St, Cluj Napoca 400028, Romania
[4] Acad Romanian Scientists, Bucharest 050085, Romania
[5] Iuliu Hatieganu Univ Med & Pharm, Dept Oral Rehabil Oral Hlth & Management, Cluj Napoca 400012, Romania
[6] Iuliu Hatieganu Univ Med & Pharm, Dept Histol, Cluj Napoca 400349, Romania
[7] Tech Univ Cluj Napoca, Dept Mat Sci & Engn, Cluj Napoca 400641, Romania
[8] Iuliu Hatieganu Univ Med & Pharm, Ctr Med Expt, Cluj Napoca 400349, Romania
[9] Rehabil Clin, Cluj Napoca 400347, Romania
[10] Iuliu Hatieganu Univ Med & Pharm, Dept Physiol, Cluj Napoca 400006, Romania
来源
INTERNATIONAL JOURNAL OF NANOMEDICINE | 2019年 / 14卷
关键词
fracture healing; HF-PESW; titanium implants; biomimetic composite coating; multi-substituted hydroxyapatite; collagen fibers; MESENCHYMAL STEM-CELLS; MULTISUBSTITUTED HYDROXYAPATITE; SUBSTITUTED HYDROXYAPATITE; NANOSTRUCTURED PHOSPHATES; FRACTURE; VITRO; REGENERATION; SCAFFOLD; COLLAGEN; SURFACE;
D O I
10.2147/IJN.S205880
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Purpose: Bone consolidation after severe trauma is the most challenging task in orthopedic surgery. This study aimed to develop biomimetic composite for coating Ti implants. Afterwards, these implants were tested in vivo to assess bone consolidation in the absence or the presence of high-frequency pulsed electromagnetic short-waves (HF-PESW). Materials: Biomimetic coating was successfully developed using multi-substituted hydroxyapatite (ms-HAP) functionalized with collagen (ms-HAP/COL), embedded into poly-lactic acid (PLA) matrix (ms-HAP/COL@PLA), and subsequently covered with self-assembled COL layer (ms-HAP/COL@PLA/COL, named HAPc). Methods: For in vivo evaluation, 32 Wistar albino rats were used in four groups: control group (CG) with Ti implant; PESW group with Ti implant+HF-PESW; HAPc group with Ti implant coated with HAPc; HAPc+PESW group with Ti implant coated with HAPc+HF-PESW. Left femoral diaphysis was fractured and fixed intramedullary. From the first post-operative day, PESW and HAPc+PESW groups underwent HF-PESW stimulation for 14 consecutive days. Biomimetic coating was characterized by XRD, HR-TEM, SEM, EDX and AFM. Results: Osteogenic markers (ALP and osteocalcin) and micro-computed tomography (CT) analysis (especially bone volume/tissue volume ratio results) indicated at 2 weeks the following group order: HAPc+PESW>HAPc approximate to PESW (P>0.05) and HAPc+PESW>control (P<0.05), indicating the higher values in HAPc+PESW group compared to CG. The fracture-site bone strength showed, at 2 weeks, the highest average value in HAPc+PESW group. Moreover, histological analysis revealed the most abundant COL fibers assembled in dense bundles in HAPc-PESW group. At 8 weeks, micro-CT indicated higher values only in HAPc+PESW group vs CG (P<0.05), and histological results showed a complete-healed fracture in groups: HAPc+PESW, HAPc and PESW, but with more advanced bone remodeling in HAPc+PESW group. Conclusion: Using Ti implants coated by HAPc jointly with HF-PESW stimulation positively influenced the bone consolidation process, especially in its early phase, thus potentially providing a superior strategy for clinical applications.
引用
收藏
页码:5799 / 5816
页数:18
相关论文
共 73 条
[1]   Adhesion aspects in biomaterials and medical devices [J].
Antoniac, Iulian ;
Sinescu, Cosmin ;
Antoniac, Aurora .
JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2016, 30 (16) :1711-1715
[2]   Stem cell-based gene delivery mediated by cationic niosomes for bone regeneration [J].
Attia, Noha ;
Mashal, Mohamed ;
Grijalvo, Santiago ;
Eritja, Ramon ;
Zarate, Jon ;
Puras, Gustavo ;
Luis Pedraz, Jose .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2018, 14 (02) :521-531
[3]   Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo [J].
Beck, George R., Jr. ;
Ha, Shin-Woo ;
Camalier, Corinne E. ;
Yamaguchi, Masayoshi ;
Li, Yan ;
Lee, Jin-Kyu ;
Weitzmann, M. Neale .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2012, 8 (06) :793-803
[4]   Bone healing in 2016 [J].
Buza, John A., III ;
Einhorn, Thomas .
CLINICAL CASES IN MINERAL AND BONE METABOLISM, 2016, 13 (02) :101-105
[5]  
Buzza Edmur Pereira, 2003, Implant Dent, V12, P182
[6]   Osteoblastic cell response on fluoridated hydroxyapatite coatings: the effect of magnesium incorporation [J].
Cai, Y. L. ;
Zhang, J. J. ;
Zhang, S. ;
Venkatraman, S. S. ;
Zeng, X. T. ;
Du, H. J. ;
Mondal, D. .
BIOMEDICAL MATERIALS, 2010, 5 (05)
[7]   Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, RANK ligand and macrophage colony-stimulating factor [J].
Chang, K ;
Chang, WHS ;
Huang, S ;
Huang, S ;
Shih, C .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2005, 23 (06) :1308-1314
[8]   Risk assessment of electromagnetic fields exposure with metallic orthopedic implants: A cadaveric study [J].
Crouzier, D. ;
Selek, L. ;
Martz, B. -A. ;
Dabouis, V. ;
Arnaud, R. ;
Debouzy, J. -C. .
ORTHOPAEDICS & TRAUMATOLOGY-SURGERY & RESEARCH, 2012, 98 (01) :90-96
[9]   Content-Dependent Osteogenic Response of Nanohydroxyapatite: An in Vitro and in Vivo Assessment within Collagen-Based Scaffolds [J].
Cunniffe, Grainne M. ;
Curtin, Caroline M. ;
Thompson, Emmet M. ;
Dickson, Glenn R. ;
O'Brien, Fergal J. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (36) :23477-23488
[10]   Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces [J].
Degasne, I ;
Baslé, MF ;
Demais, V ;
Huré, G ;
Lesourd, M ;
Grolleau, B ;
Mercier, L ;
Chappard, D .
CALCIFIED TISSUE INTERNATIONAL, 1999, 64 (06) :499-507