A de Casteljau algorithm for generalized Bernstein polynomials

被引:35
作者
Phillips, GM [1 ]
机构
[1] UNIV ST ANDREWS,INST MATH,ST ANDREWS KY16 9SS,FIFE,SCOTLAND
来源
BIT | 1997年 / 37卷 / 01期
关键词
Bernstein polynomial; de Casteljau algorithm;
D O I
10.1007/BF02510184
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper is concerned with a generalization of the classical Bernstein polynomials where the function is evaluated at intervals which are in geometric progression. It is shown that these polynomials can be generated by a de Casteljau algorithm, which is a generalization of that relating to the classical case.
引用
收藏
页码:232 / 236
页数:5
相关论文
共 8 条
[1]  
Andrews G. E., 1976, The Theory of Partitions
[2]  
Cheney EW., 1966, INTRO APPROXIMATION
[3]  
Davis, 1976, INTERPOLATION APPROX
[4]  
Hoschek J., 1993, FUNDAMENTALS COMPUTE
[5]   POLYNOMIAL INTERPOLATION AT POINTS OF A GEOMETRIC MESH ON A TRIANGLE [J].
LEE, SL ;
PHILLIPS, GM .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1988, 108 :75-87
[6]  
PHILLIPS GM, IN PRESS FESTSCHRIFT
[7]  
Rivlin TJ., 1981, INTRO APPROXIMATION
[8]   ON POLYNOMIAL INTERPOLATION AT THE POINTS OF A GEOMETRIC PROGRESSION [J].
SCHOENBERG, IJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1981, 90 :195-207