Duality theory of weighted Hardy spaces with arbitrary number of parameters

被引:27
作者
Lu, Guozhen [1 ]
Ruan, Zhuoping [2 ,3 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, IMS, Nanjing 210093, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Duality; weighted Hardy space; discrete Littlewood-Paley-Stein analysis; Caderon's identity; Max-Min type inequality; multiparameter A(infinity) weight; multiparameter singular integrals; SINGULAR-INTEGRALS; PRODUCT; VERSION; BMO;
D O I
10.1515/forum-2012-0018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the discrete Littlewood-Paley-Stein analysis to get the duality result of the weighted product Hardy space for arbitrary number of parameters under a rather weak condition on the product weight w is an element of A(infinity)(R-n1 x ... x R-nk). We will show that for any k >= 2, (H-w(p) (R-n1 x ... x R-nk))* = CMOwp (R-n1 x ... x R-nk) (a generalized Carleson measure), and obtain the boundedness of singular integral operators on BMOw. Our theorems even when the weight function w = 1 extend the H-1-BMO duality of Chang-R. Fefferman for the non-weighted two-parameter Hardy space H-1(R-n x R-m) to H-p (R-n1 x ... x R-nk)for all 0 < p <= 1 and our weighted theory extends the duality result of Krug-Torchinsky on weighted Hardy spaces H-w(p) (R-n x R-m) for w is an element of A(r) (R-n x R-m) with 1 <= r <= 2 and r/2 < p <= 1 to H-w(p) (R-n1 x ... x R-nk) with w is an element of A(infinity) (R-n1 x ... x R-nk) for all 0 < p <= 1.
引用
收藏
页码:1429 / 1457
页数:29
相关论文
共 50 条
  • [41] A REVISIT TO THE ATOMIC DECOMPOSITION OF WEIGHTED HARDY SPACES
    Tan, J.
    ACTA MATHEMATICA HUNGARICA, 2022, 168 (02) : 490 - 508
  • [42] Weighted Hardy operators and commutators on Morrey spaces
    Fu, Zunwei
    Lu, Shanzhen
    FRONTIERS OF MATHEMATICS IN CHINA, 2010, 5 (03) : 531 - 539
  • [43] Weighted local Hardy spaces associated with operators
    Gong, Ruming
    Song, Liang
    Xie, Peizhu
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (02):
  • [44] Change of variables for weighted Hardy spaces on a domain
    Miyachi, Akihiko
    HOKKAIDO MATHEMATICAL JOURNAL, 2009, 38 (03) : 519 - 555
  • [45] Duality of matrix-weighted Besov spaces
    Roudenko, S
    STUDIA MATHEMATICA, 2004, 160 (02) : 129 - 156
  • [46] DUALITY OF WEIGHTED BERGMAN SPACES WITH SMALL EXPONENTS
    Perala, Antti
    Rattya, Jouni
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (02) : 621 - 626
  • [47] The boundedness of operators on weighted multi-parameter local Hardy spaces
    Ding, Wei
    Tang, Yan
    Zhu, Yueping
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (01) : 386 - 404
  • [48] Atomic Decomposition of Weighted Multi-parameter Mixed Hardy Spaces
    Ding, Wei
    Zou, Fangli
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (06)
  • [49] The boundedness of operators on weighted multi-parameter mixed Hardy spaces
    Ding, Wei
    Gu, Min
    Zhu, Yueping
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (07) : 2730 - 2749
  • [50] Numerical Range on Weighted Hardy Spaces as Semi Inner Product Spaces
    Heydari, Mohammad Taghi
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2017, 25 (01): : 87 - 98