Duality theory of weighted Hardy spaces with arbitrary number of parameters

被引:27
作者
Lu, Guozhen [1 ]
Ruan, Zhuoping [2 ,3 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, IMS, Nanjing 210093, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Duality; weighted Hardy space; discrete Littlewood-Paley-Stein analysis; Caderon's identity; Max-Min type inequality; multiparameter A(infinity) weight; multiparameter singular integrals; SINGULAR-INTEGRALS; PRODUCT; VERSION; BMO;
D O I
10.1515/forum-2012-0018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the discrete Littlewood-Paley-Stein analysis to get the duality result of the weighted product Hardy space for arbitrary number of parameters under a rather weak condition on the product weight w is an element of A(infinity)(R-n1 x ... x R-nk). We will show that for any k >= 2, (H-w(p) (R-n1 x ... x R-nk))* = CMOwp (R-n1 x ... x R-nk) (a generalized Carleson measure), and obtain the boundedness of singular integral operators on BMOw. Our theorems even when the weight function w = 1 extend the H-1-BMO duality of Chang-R. Fefferman for the non-weighted two-parameter Hardy space H-1(R-n x R-m) to H-p (R-n1 x ... x R-nk)for all 0 < p <= 1 and our weighted theory extends the duality result of Krug-Torchinsky on weighted Hardy spaces H-w(p) (R-n x R-m) for w is an element of A(r) (R-n x R-m) with 1 <= r <= 2 and r/2 < p <= 1 to H-w(p) (R-n1 x ... x R-nk) with w is an element of A(infinity) (R-n1 x ... x R-nk) for all 0 < p <= 1.
引用
收藏
页码:1429 / 1457
页数:29
相关论文
共 50 条
  • [31] A class of quasicontractive semigroups acting on Hardy and weighted Hardy spaces
    I. Chalendar
    J. R. Partington
    Semigroup Forum, 2017, 95 : 281 - 292
  • [32] A class of quasicontractive semigroups acting on Hardy and weighted Hardy spaces
    Chalendar, I.
    Partington, J. R.
    SEMIGROUP FORUM, 2017, 95 (02) : 281 - 292
  • [33] Duality for Hardy Spaces in Domains of Cn and Some Applications
    Aizenberg, Lev
    Gotlib, Victor
    Vidras, Alekos
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (06) : 1341 - 1366
  • [34] Weighted anisotropic product Hardy spaces and boundedness of sublinear operators
    Bownik, Marcin
    Li, Baode
    Yang, Dachun
    Zhou, Yuan
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (03) : 392 - 442
  • [35] Dual Spaces of Weighted Multi-Parameter Hardy Spaces Associated with the Zygmund Dilation
    Han, Xiaolong
    Lu, Guozhen
    Xiao, Yayuan
    ADVANCED NONLINEAR STUDIES, 2012, 12 (03) : 533 - 553
  • [36] Weighted Hardy spaces and BMO spaces associated with Schrodinger operators
    Liu, Heping
    Tang, Lin
    Zhu, Hua
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (17-18) : 2173 - 2207
  • [37] A revisit to the atomic decomposition of weighted Hardy spaces
    J. Tan
    Acta Mathematica Hungarica, 2022, 168 : 490 - 508
  • [38] Weighted Hardy operators and commutators on Morrey spaces
    Zunwei Fu
    Shanzhen Lu
    Frontiers of Mathematics in China, 2010, 5 : 531 - 539
  • [39] ON THE ATOMIC AND MOLECULAR DECOMPOSITION OF WEIGHTED HARDY SPACES
    Rocha, Pablo
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2020, 61 (02): : 229 - 247
  • [40] Generalized composition operators on weighted Hardy spaces
    Stevic, Stevo
    Sharma, Ajay K.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (17) : 8347 - 8352