Duality theory of weighted Hardy spaces with arbitrary number of parameters

被引:27
作者
Lu, Guozhen [1 ]
Ruan, Zhuoping [2 ,3 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, IMS, Nanjing 210093, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Duality; weighted Hardy space; discrete Littlewood-Paley-Stein analysis; Caderon's identity; Max-Min type inequality; multiparameter A(infinity) weight; multiparameter singular integrals; SINGULAR-INTEGRALS; PRODUCT; VERSION; BMO;
D O I
10.1515/forum-2012-0018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the discrete Littlewood-Paley-Stein analysis to get the duality result of the weighted product Hardy space for arbitrary number of parameters under a rather weak condition on the product weight w is an element of A(infinity)(R-n1 x ... x R-nk). We will show that for any k >= 2, (H-w(p) (R-n1 x ... x R-nk))* = CMOwp (R-n1 x ... x R-nk) (a generalized Carleson measure), and obtain the boundedness of singular integral operators on BMOw. Our theorems even when the weight function w = 1 extend the H-1-BMO duality of Chang-R. Fefferman for the non-weighted two-parameter Hardy space H-1(R-n x R-m) to H-p (R-n1 x ... x R-nk)for all 0 < p <= 1 and our weighted theory extends the duality result of Krug-Torchinsky on weighted Hardy spaces H-w(p) (R-n x R-m) for w is an element of A(r) (R-n x R-m) with 1 <= r <= 2 and r/2 < p <= 1 to H-w(p) (R-n1 x ... x R-nk) with w is an element of A(infinity) (R-n1 x ... x R-nk) for all 0 < p <= 1.
引用
收藏
页码:1429 / 1457
页数:29
相关论文
共 32 条
[1]  
[Anonymous], 1991, CBMS REGIONAL C SERI
[2]  
[Anonymous], REV MAT IBEROAM
[3]  
Carleson L., 1974, COUNTEREXAMPLE MEASU, V7
[4]   A CONTINUOUS VERSION OF DUALITY OF H-1 WITH BMO ON THE BIDISC [J].
CHANG, SYA ;
FEFFERMAN, R .
ANNALS OF MATHEMATICS, 1980, 112 (01) :179-201
[5]   SOME RECENT DEVELOPMENTS IN FOURIER-ANALYSIS AND HP-THEORY ON PRODUCT DOMAINS [J].
CHANG, SYA ;
FEFFERMAN, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :1-43
[6]  
Ding Y, 2012, POTENTIAL ANAL, V37, P31, DOI 10.1007/s11118-011-9244-y
[7]  
Fefferman C, 1972, ACTA MATH-DJURSHOLM, V129, P137, DOI 10.1007/BF02392215
[8]   CHARACTERIZATIONS OF BOUNDED MEAN OSCILLATION [J].
FEFFERMAN, C .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 77 (04) :587-+
[9]   AP WEIGHTS AND SINGULAR-INTEGRALS [J].
FEFFERMAN, R .
AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (05) :975-987
[10]   HARMONIC-ANALYSIS ON PRODUCT-SPACES [J].
FEFFERMAN, R .
ANNALS OF MATHEMATICS, 1987, 126 (01) :109-130