Morse theory for asymptotically linear Hamiltonian systems

被引:27
作者
Abbondandolo, A [1 ]
机构
[1] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
Morse theory; Hamiltonian systems; resonance at infinity;
D O I
10.1016/S0362-546X(98)00265-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H∈C2(R2N×R/TZ), the T-periodic Hamiltonian system dz/dt = J▽H(z(t),t) (equation 0.1) is considered. A linear T-periodic Hamiltonian system is said to be T-non-resonant if it has no T-periodic solutions, except from the equilibrium point 0. The system (0.1) is said to be T-non-resonant at infinity if the linear system dw/dt = JA∞(t)w(t) (equation 0.2) is T-non-resonant. A T-periodic solution z of Eq. (0.1) is said to be T-non-resonant if the linearized system near z is dw/dt = JD2H(z(t),t)w(t) is T-non-resonant.
引用
收藏
页码:997 / 1049
页数:53
相关论文
共 23 条
[1]  
ABBONDANDOLO A, 1997, TOPOL METHOD NONL AN, V9, P325
[2]   PERIODIC-SOLUTIONS OF ASYMPTOTICALLY LINEAR HAMILTONIAN-SYSTEMS [J].
AMANN, H ;
ZEHNDER, E .
MANUSCRIPTA MATHEMATICA, 1980, 32 (1-2) :149-189
[3]  
Amann H., 1980, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V7, P539
[4]   Critical point theory for asymptotically quadratic functionals and applications to problems with resonance [J].
Bartsch, T ;
Li, SJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (03) :419-441
[5]   Estimate of the number of periodic solutions via the twist number [J].
Benci, V ;
Fortunato, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 133 (01) :117-135
[6]   A NEW APPROACH TO THE MORSE-CONLEY THEORY AND SOME APPLICATIONS [J].
BENCI, V .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1991, 158 :231-305
[7]  
BENCI V, 1994, NONLINEAR DIFFERENTI, V1, P267
[8]  
BORISOVICH YG, 1977, USP MAT NAUK, V32, P3
[9]   LECTURES ON MORSE-THEORY, OLD AND NEW [J].
BOTT, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (02) :331-358
[10]   Nontrivial periodic solutions for strong resonance Hamiltonian systems [J].
Chang, KC ;
Liu, JQ ;
Liu, MJ .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (01) :103-117