An alternative formulation of kernel LPP with application to image recognition

被引:47
作者
Feng, Guiyu
Hu, Dewen [1 ]
Zhang, David
Zhou, Zongtan
机构
[1] Natl Univ Def Technol, Coll Mechatron & Automat, Dept Automat Control, Changsha 410073, Hunan, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Kowloon, Hong Kong, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
kernel principal component analysis (KPCA); locality preserving projections (LPP); kernel LPP (KLPP); image recognition;
D O I
10.1016/j.neucom.2006.01.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Locality preserving projections (LPP) is a new subspace feature extraction method which seeks to preserve the local structure and intrinsic geometry of the data space. As the LPP model is linear, it may fail to extract the nonlinear features. This paper proposes to address this problem using an alternative formulation, kernel locality preserving projections (KLPP). Our algorithm consists of two steps: kernel principal component analysis (KPCA) plus LPP. We provide an outline for implementing KLPP. Experiments on the ORL face database and PolyU palmprint database demonstrate the effectiveness of the proposed algorithm. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1733 / 1738
页数:6
相关论文
共 14 条
  • [1] [Anonymous], 2003, P 16 INT C NEUR INF
  • [2] Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection
    Belhumeur, PN
    Hespanha, JP
    Kriegman, DJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) : 711 - 720
  • [3] Belkin M, 2002, ADV NEUR IN, V14, P585
  • [4] Face recognition using Laplacianfaces
    He, XF
    Yan, SC
    Hu, YX
    Niyogi, P
    Zhang, HJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (03) : 328 - 340
  • [5] Learning a locality preserving subspace for visual recognition
    He, XF
    Yan, SC
    Hu, YX
    Zhang, HJ
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, 2003, : 385 - 392
  • [6] Palmprint recognition using eigenpalms features
    Lu, GM
    Zhang, D
    Wang, KQ
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1463 - 1467
  • [7] Nonlinear component analysis as a kernel eigenvalue problem
    Scholkopf, B
    Smola, A
    Muller, KR
    [J]. NEURAL COMPUTATION, 1998, 10 (05) : 1299 - 1319
  • [8] EIGENFACES FOR RECOGNITION
    TURK, M
    PENTLAND, A
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 1991, 3 (01) : 71 - 86
  • [9] Fisherpalms based palmprint recognition
    Wu, XQ
    Zhang, D
    Wang, KQ
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (15) : 2829 - 2838
  • [10] Kernel ICA: An alternative formulation and its application to face recognition
    Yang, J
    Gao, XM
    Zhang, D
    Yang, JY
    [J]. PATTERN RECOGNITION, 2005, 38 (10) : 1784 - 1787