Hardness, electrical resistivity, and modeling of in situ Cu-Nb microcomposites

被引:50
作者
Deng, Liping [1 ,2 ]
Han, Ke [2 ]
Hartwig, Karl T. [3 ]
Siegrist, Theo M. [2 ]
Dong, Lianyang [2 ]
Sun, Zeyuan [1 ]
Yang, Xiaofang [1 ]
Liu, Qing [1 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
[2] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[3] Texas A&M Univ, College Stn, TX 77843 USA
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
In situ Cu-Nb microcomposite; Hall-Petch; Interface area density; Solid solution hardening; MECHANICAL-PROPERTIES; HIGH-STRENGTH; LAYERED COMPOSITES; MICROSTRUCTURE; DEFORMATION; CONDUCTIVITY; AG; SIMULATION; CONDUCTORS; BEHAVIOR;
D O I
10.1016/j.jallcom.2014.03.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper reports our investigation on the evolution of microstructure, hardness, and electrical conductivity of in situ Cu-16.5 vol.% Nb microcomposites as a function of drawing strain. Both interface area density and lattice distortion were taken into account for analyzing the hardness and resistivity at different levels of plastic strain. A model was developed for describing microstructure dimensions including both spacing and curl of Nb ribbons. Based on this model, a modified Hall-Petch formula was derived. Our results suggest that interface area density and lattice distortion have significant impacts on both hardness and electrical resistivity. (C) 2014 Elsevier B. V. All rights reserved.
引用
收藏
页码:331 / 338
页数:8
相关论文
共 61 条
[21]   Microstructure and conductivity of Cu-Nb microcomposites fabricated by the bundling and drawing process [J].
Hong, SI ;
Hill, MA .
SCRIPTA MATERIALIA, 2001, 44 (10) :2509-2515
[22]   Simulation of shear banding in heterophase co-deformation: Example of plane strain compressed Cu-Ag and Cu-Nb metal matrix composites [J].
Jia, N. ;
Roters, F. ;
Eisenlohr, P. ;
Raabe, D. ;
Zhao, X. .
ACTA MATERIALIA, 2013, 61 (12) :4591-4606
[23]   Effect of the size misfit of atoms of binary copper alloys on the friction fracture strength [J].
Kukareko, V. A. ;
Kononov, A. G. .
PHYSICS OF THE SOLID STATE, 2009, 51 (02) :286-291
[24]   Microstructure in Cu-Nb microcomposites [J].
Leprince-Wang, Y ;
Han, K ;
Huang, Y ;
Yu-Zhang, K .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 351 (1-2) :214-223
[25]   Characteristics of High Strength and High Conductivity Cu-Nb Micro-Composites [J].
Liang, Ming ;
Lu, Yafeng ;
Chen, Zili ;
Li, Chengshan ;
Yan, Guo ;
Li, Chunguang ;
Zhang, Pingxiang .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2010, 20 (03) :1615-1617
[26]   Dislocation assisted face-centered-cubic/body-centered-cubic interface mixing during severe plastic deformation [J].
Liu, Jiabin ;
Zhang, Lihui ;
Song, Lunan ;
Meng, Liang ;
Zeng, Yuewu ;
Wang, Miao ;
Fang, Youtong ;
Ma, Jien .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 586 :16-21
[27]   Interfacial orientation and misorientation relationships in nanolamellar Cu/Nb composites using transmission-electron-microscope-based orientation and phase mapping [J].
Liu, X. ;
Nuhfer, N. T. ;
Rollett, A. D. ;
Sinha, S. ;
Lee, S. -B. ;
Carpenter, J. S. ;
LeDonne, J. E. ;
Darbal, A. ;
Barmak, K. .
ACTA MATERIALIA, 2014, 64 :333-344
[28]   Tensile behavior of 40 nm Cu/Nb nanoscale multilayers [J].
Mara, N. A. ;
Bhattacharyya, D. ;
Hoagland, R. G. ;
Misra, A. .
SCRIPTA MATERIALIA, 2008, 58 (10) :874-877
[29]   Experimental investigation and modeling of the influence of microstructure on the resistive conductivity of a Cu-Ag-Nb in situ composite [J].
Mattissen, D ;
Raabe, D ;
Heringhaus, F .
ACTA MATERIALIA, 1999, 47 (05) :1627-1634
[30]   SURFACE SCATTERING OF ELECTRONS ON COPPER WHISKERS AND ITS INFLUENCE ON ELECTRICAL-RESISTIVITY AT 4.2 K [J].
MENDE, HH ;
THUMMES, G .
APPLIED PHYSICS, 1975, 6 (01) :93-97