THE COMPLEX VOLUMES OF TWIST KNOTS

被引:13
作者
Cho, Jinseok [1 ]
Murakami, Jun [2 ]
Yokota, Yoshiyuki [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151742, South Korea
[2] Waseda Univ, Fac Sci & Engn, Dept Math, Shinjuku Ku, Tokyo 1698555, Japan
[3] Tokyo Metropolitan Univ, Dept Math, Tokyo 1920397, Japan
关键词
Twist knot; volume conjecture; complex volume;
D O I
10.1090/S0002-9939-09-09906-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a given hyperbolic knot, the third author defined a function whose imaginary part gives the hyperbolic volume of the knot complement. We show that, for a twist knot, the function actually gives the complex volume of the knot complement using Zickert's and Neumann's theory of the extended Bloch groups and the complex volumes.
引用
收藏
页码:3533 / 3541
页数:9
相关论文
共 42 条
[21]   Proof of the Volume Conjecture for Torus Knots [J].
R. M. Kashaev ;
O. Tirkkonen .
Journal of Mathematical Sciences, 2003, 115 (1) :2033-2036
[22]   Knots, Perturbative Series and Quantum Modularity [J].
Garoufalidis, Stavros ;
Zagier, Don .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20
[23]   On minimal elements for a partial order of prime knots [J].
Nagasato, Fumikazu .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (04) :1059-1063
[24]   An L2-Alexander invariant for knots [J].
Li, Weiping ;
Zhang, Weiping .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2006, 8 (02) :167-187
[25]   A volumish theorem for the Jones polynomial of alternating knots [J].
Dasbach, Oliver T. ;
Lin, Xiao-Song .
PACIFIC JOURNAL OF MATHEMATICS, 2007, 231 (02) :279-291
[26]   Kashaev invariants of twice-iterated torus knots [J].
Murakami, Hitoshi ;
Tran, Anh T. .
TOPOLOGY AND ITS APPLICATIONS, 2021, 290
[27]   Exact Computation of the n-Loop Invariants of Knots [J].
Garoufalidis, Stavros ;
Sabo, Eric ;
Scott, Shane .
EXPERIMENTAL MATHEMATICS, 2016, 25 (02) :125-129
[28]   Proof of the volume conjecture for whitehead doubles of a family of torus knots [J].
Zheng, Hao .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2007, 28 (04) :375-388
[29]   The Noncommutative A-Polynomial of (-2, 3, n) Pretzel Knots [J].
Garoufalidis, Stavros ;
Koutschan, Christoph .
EXPERIMENTAL MATHEMATICS, 2012, 21 (03) :241-251
[30]   Proof of the Volume Conjecture for Whitehead Doubles of a Family of Torus Knots [J].
Hao Zheng .
Chinese Annals of Mathematics, Series B, 2007, 28 :375-388