Foldable Conductive Cellulose Fiber Networks Modified by Graphene Nanoplatelet-Bio-Based Composites

被引:58
作者
Cataldi, Pietro [1 ]
Bayer, Ilker S. [1 ]
Bonaccorso, Francesco [2 ]
Pellegrini, Vittorio [2 ]
Athanassiou, Athanassia [1 ]
Cingolani, Roberto [1 ,2 ]
机构
[1] Ist Italiano Tecnol, Smart Mat, Via Morego 30, I-16163 Genoa, Italy
[2] Ist Italiano Tecnol, Graphene Labs, I-16163 Genoa, Italy
关键词
FLEXIBLE ELECTRONICS; POLYMER COMPOSITES; CRITICAL EXPONENTS; NANOCOMPOSITES; PAPER; OXIDE; FILMS;
D O I
10.1002/aelm.201500224
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Truly foldable flexible electronic components require a foldable substrate modified with a conducting material that can retain its electrical conductivity and mechanical integrity even after hard mechanical manipulations and multiple folding events. Here, such a material exploiting the combination of all-biodegradable components (substrate and the polymer matrix) and graphene nanoplatelets is designed and fabricated. A commercially available thermoplastic starch-based polymer (Mater-Bi) and graphene nanoplatelets are simultaneously dispersed in an organic solvent to formulate conductive inks. The inks are spray painted on pure cellulose sheets and hot-pressed into their fiber network after drying. The resultant nanostructured flexible composites display excellent isotropic electrical conductivity, reaching very low sheet resistance value approximate to 10 Omega sq(-1), depending on the relative concentration between the biopolymer and the graphene nanoplatelets. Transmission electron microscopy results indicated that during hot-pressing, graphene nanoplatelets are physically embedded into the cellulose fibers, resulting in high electrical conductivity of the flexible composite. The paper-like flexible conductors can withstand many severe folding events, maintaining their mechanical and electrical properties and showing only a slight decrease of their electrical conductivity with respect to the unfolded counterparts. Unlike conductive paper technologies, the proposed paper-like flexible conductors demonstrate both sides isotropic conductivity due to pressure-induced impregnation.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Properties and applications of Mater-Bi starch-based materials [J].
Bastioli, C .
POLYMER DEGRADATION AND STABILITY, 1998, 59 (1-3) :263-272
[2]   A review and analysis of electrical percolation in carbon nanotube polymer composites [J].
Bauhofer, Wolfgang ;
Kovacs, Josef Z. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (10) :1486-1498
[3]   Electrically conductive and high temperature resistant superhydrophobic composite films from colloidal graphite [J].
Bayer, I. S. ;
Caramia, V. ;
Fragouli, D. ;
Spano, F. ;
Cingolani, R. ;
Athanassiou, A. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (05) :2057-2062
[4]   All in the graphene family - A recommended nomenclature for two-dimensional carbon materials [J].
Bianco, Alberto ;
Cheng, Hui-Ming ;
Enoki, Toshiaki ;
Gogotsi, Yury ;
Hurt, Robert H. ;
Koratkar, Nikhil ;
Kyotani, Takashi ;
Monthioux, Marc ;
Park, Chong Rae ;
Tascon, Juan M. D. ;
Zhang, Jin .
CARBON, 2013, 65 :1-6
[5]   Composites reinforced with cellulose based fibres [J].
Bledzki, AK ;
Gassan, J .
PROGRESS IN POLYMER SCIENCE, 1999, 24 (02) :221-274
[6]   Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J].
Bonaccorso, Francesco ;
Colombo, Luigi ;
Yu, Guihua ;
Stoller, Meryl ;
Tozzini, Valentina ;
Ferrari, Andrea C. ;
Ruoff, Rodney S. ;
Pellegrini, Vittorio .
SCIENCE, 2015, 347 (6217)
[7]   Ink-jet printing of graphene for flexible electronics: An environmentally-friendly approach [J].
Capasso, A. ;
Castillo, A. E. Del Rio ;
Sun, H. ;
Ansaldo, A. ;
Pellegrini, V. ;
Bonaccorso, F. .
SOLID STATE COMMUNICATIONS, 2015, 224 :53-63
[8]   Non-universal conductivity critical exponents in anisotropic percolating media:: a new interpretation [J].
Celzard, A ;
Marêché, JF .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 317 (3-4) :305-312
[9]   Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films? [J].
De, Sukanta ;
Coleman, Jonathan N. .
ACS NANO, 2010, 4 (05) :2713-2720
[10]   Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems [J].
Ferrari, Andrea C. ;
Bonaccorso, Francesco ;
Fal'ko, Vladimir ;
Novoselov, Konstantin S. ;
Roche, Stephan ;
Boggild, Peter ;
Borini, Stefano ;
Koppens, Frank H. L. ;
Palermo, Vincenzo ;
Pugno, Nicola ;
Garrido, Jose A. ;
Sordan, Roman ;
Bianco, Alberto ;
Ballerini, Laura ;
Prato, Maurizio ;
Lidorikis, Elefterios ;
Kivioja, Jani ;
Marinelli, Claudio ;
Ryhaenen, Tapani ;
Morpurgo, Alberto ;
Coleman, Jonathan N. ;
Nicolosi, Valeria ;
Colombo, Luigi ;
Fert, Albert ;
Garcia-Hernandez, Mar ;
Bachtold, Adrian ;
Schneider, Gregory F. ;
Guinea, Francisco ;
Dekker, Cees ;
Barbone, Matteo ;
Sun, Zhipei ;
Galiotis, Costas ;
Grigorenko, Alexander N. ;
Konstantatos, Gerasimos ;
Kis, Andras ;
Katsnelson, Mikhail ;
Vandersypen, Lieven ;
Loiseau, Annick ;
Morandi, Vittorio ;
Neumaier, Daniel ;
Treossi, Emanuele ;
Pellegrini, Vittorio ;
Polini, Marco ;
Tredicucci, Alessandro ;
Williams, Gareth M. ;
Hong, Byung Hee ;
Ahn, Jong-Hyun ;
Kim, Jong Min ;
Zirath, Herbert ;
van Wees, Bart J. .
NANOSCALE, 2015, 7 (11) :4598-4810