Bifurcation Diagram of the Two Vortices in a Bose-Einstein Condensate with Intensities of the Same Signs

被引:4
作者
Sokolov, S. V. [1 ,2 ]
Ryabov, P. E. [2 ,3 ,4 ]
机构
[1] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Moscow Oblast, Russia
[2] Russian Acad Sci, Inst Machines Sci, Moscow 101990, Russia
[3] Financial Univ Govt Russian Federat, Moscow 125993, Russia
[4] Udmurt State Univ, Izhevsk 426034, Russia
关键词
IDEAL FLUID; CIRCULAR-CYLINDER; POINT VORTEX; RIGID-BODY; MOTION; STABILITY; DYNAMICS;
D O I
10.1134/S1064562418030249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the problem of motion of a system of two point vortices in a Bose-Einstein condensate enclosed in a cylindrical trap. Bifurcation diagram is analytically determined for the intensities of one sign and bifurcations of Liouville tori are investigated. We obtain explicit formulas for determining the type of critical trajectories, which allow us to investigate the stability of the obtained solutions.
引用
收藏
页码:286 / 290
页数:5
相关论文
共 15 条
[1]   Topology and Bifurcations in Nonholonomic Mechanics [J].
Bizyaev, Ivan A. ;
Bolsinov, Alexey ;
Borisov, Alexey ;
Mamaev, Ivan .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (10)
[2]   Topology and stability of integrable systems [J].
Bolsinov, A. V. ;
Borisov, A. V. ;
Mamaev, I. S. .
RUSSIAN MATHEMATICAL SURVEYS, 2010, 65 (02) :259-317
[3]   Asymptotic stability and associated problems of dynamics of falling rigid body [J].
Borisov, A. V. ;
Kozlov, V. V. ;
Mamaev, I. S. .
REGULAR & CHAOTIC DYNAMICS, 2007, 12 (05) :531-565
[4]   Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid [J].
Borisov, A. V. ;
Ryabov, P. E. ;
Sokolov, S. V. .
MATHEMATICAL NOTES, 2016, 99 (5-6) :834-839
[5]   Dynamic interaction of point vortices and a two-dimensional cylinder [J].
Borisov, Alexey V. ;
Mamaev, Ivan S. ;
Ramodanov, Sergey M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (06)
[6]   On the motion of a heavy rigid body in an ideal fluid with circulation [J].
Borisov, AV ;
Mamaev, IS .
CHAOS, 2006, 16 (01)
[7]   Motion of a circular cylinder and n point vortices in a perfect fluid [J].
Borisov, AV ;
Mamaev, IS ;
Ramodanov, SM .
REGULAR & CHAOTIC DYNAMICS, 2003, 8 (04) :449-462
[8]   An integrability of the problem on motion of cylinder and vortex in the ideal fluid [J].
Borisov, AV ;
Mamaev, IS .
REGULAR & CHAOTIC DYNAMICS, 2003, 8 (02) :163-166
[9]   Rotating trapped Bose-Einstein condensates [J].
Fetter, Alexander L. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :647-691
[10]   Real-Time Dynamics of Single Vortex Lines and Vortex Dipoles in a Bose-Einstein Condensate [J].
Freilich, D. V. ;
Bianchi, D. M. ;
Kaufman, A. M. ;
Langin, T. K. ;
Hall, D. S. .
SCIENCE, 2010, 329 (5996) :1182-1185