Biosynthethic inorganic chemistry

被引:89
作者
Lu, Yi [1 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
关键词
biocatalysis; bioinorganic chemistry; biomimetic synthesis; protein design;
D O I
10.1002/anie.200600168
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Inorganic chemistry and biology can benefit greatly from each other. Although synthetic and physical inorganic chemistry have been greatly successful in clarifying the role of metal ions in biological systems, the time may now be right to utilize biological systems to advance coordination chemistry. One such example is the use of small, stable, easy-to-make, and well-characterized proteins as ligands to synthesize novel inorganic compounds. This biosynthetic inorganic chemistry is possible thanks to a number of developments in biology. This review summarizes the progress in the synthesis of close models of complex metalloproteins, followed by a description of recent advances in using the approach for making novel compounds that are unprecedented in either inorganic chemistry or biology. The focus is mainly on synthetic "tricks" learned from biology, as well as novel structures and insights obtained. The advantages and disadvantages of this biosynthetic approach are discussed. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA.
引用
收藏
页码:5588 / 5601
页数:14
相关论文
共 130 条
[1]   ROLES OF PROXIMAL LIGAND IN HEME-PROTEINS - REPLACEMENT OF PROXIMAL HISTIDINE OF HUMAN MYOGLOBIN WITH CYSTEINE AND TYROSINE BY SITE-DIRECTED MUTAGENESIS AS MODELS FOR P-450, CHLOROPEROXIDASE, AND CATALASE [J].
ADACHI, S ;
NAGANO, S ;
ISHIMORI, K ;
WATANABE, Y ;
MORISHIMA, I ;
EGAWA, T ;
KITAGAWA, T ;
MAKINO, R .
BIOCHEMISTRY, 1993, 32 (01) :241-252
[2]   ALTERATION OF HUMAN MYOGLOBIN PROXIMAL HISTIDINE TO CYSTEINE OR TYROSINE BY SITE-DIRECTED MUTAGENESIS - CHARACTERIZATION AND THEIR CATALYTIC ACTIVITIES [J].
ADACHI, S ;
NAGANO, S ;
WATANABE, Y ;
ISHIMORI, K ;
MORISHIMA, I .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1991, 180 (01) :138-144
[3]  
Anderson BA, 1999, PROCESS CHEMISTRY IN THE PHARMACEUTICAL INDUSTRY, P263
[4]   APPLICATION OF A PRACTICAL BIOCATALYTIC REDUCTION TO AN ENANTIOSELECTIVE SYNTHESIS OF THE 5H-2,3-BENZODIAZEPINE LY300164 [J].
ANDERSON, BA ;
HANSEN, MM ;
HARKNESS, AR ;
HENRY, CL ;
VICENZI, JT ;
ZMIJEWSKI, MJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (49) :12358-12359
[5]  
[Anonymous], 1997, ANGEW CHEM
[6]   OXYGEN ACTIVATION AND THE CONSERVATION OF ENERGY IN CELL RESPIRATION [J].
BABCOCK, GT ;
WIKSTROM, M .
NATURE, 1992, 356 (6367) :301-309
[7]   CRYSTALLOGRAPHIC, SPECTROSCOPIC AND THEORETICAL-STUDIES OF AN ELECTRON-DELOCALIZED CU(1.5)-CU(1.5) COMPLEX [J].
BARR, ME ;
SMITH, PH ;
ANTHOLINE, WE ;
SPENCER, B .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1993, (21) :1649-1652
[8]   Copper A of cytochrome c oxidase, a novel, long-embattled, biological electron-transfer site [J].
Beinert, H .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 245 (03) :521-532
[9]   Probing the role of axial methionine in the blue copper center of azurin with unnatural amino acids [J].
Berry, SM ;
Ralle, M ;
Low, DW ;
Blackburn, NJ ;
Lu, Y .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (29) :8760-8768
[10]   An engineered azurin variant containing a selenocysteine copper ligand [J].
Berry, SM ;
Gieselman, MD ;
Nilges, MJ ;
van der Donk, WA ;
Lu, Y .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (10) :2084-2085