Calibrated prediction regions for Gaussian random fields

被引:0
作者
Lagazio, Corrado [1 ]
Vidoni, Paolo [2 ]
机构
[1] Univ Genoa, Dept Econ & Business Studies, Via Vivaldi 5, I-16126 Genoa, Italy
[2] Univ Udine, Dept Econ & Stat, Via Tomadini 30-A, I-33100 Udine, Italy
关键词
air quality; bootstrap calibration; coverage probability; estimative prediction region; highest prediction density region; spatial prediction; DISTRIBUTIONS; MODELS; LIMITS; GEOSTATISTICS; INTERVALS;
D O I
10.1002/env.2495
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper proposes a method to construct well-calibrated frequentist prediction regions, with particular regard to the highest prediction density regions, which may be useful for multivariate spatial prediction. We consider, in particular, Gaussian random fields, and using a calibrating procedure we effectively improve the estimative prediction regions, because the coverage probability turns out to be closer to the target nominal value. Whenever a closed-form expression for the well-calibrated prediction region is not available, we may specify a simple bootstrap-based estimator. Particular attention is dedicated to the associated, improved predictive distribution function, which can be usefully considered for identifying spatial locations with extreme or unusual observations. A simulation study is proposed in order to compare empirically the calibrated predictive regions with the estimative ones. The proposed method is then applied to the global model assessment of a deterministic model for the prediction of PM10 levels using data from a network of air quality monitoring stations.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] The Rational SPDE Approach for Gaussian Random Fields With General Smoothness
    Bolin, David
    Kirchner, Kristin
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (02) : 274 - 285
  • [42] Fast and exact simulation of univariate and bivariate Gaussian random fields
    Moreva, Olga
    Schlather, Martin
    STAT, 2018, 7 (01):
  • [43] On Information About Covariance Parameters in Gaussian Matern Random Fields
    De Oliveira, Victor
    Han, Zifei
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (04) : 690 - 712
  • [44] Mitigating spatial confounding by explicitly correlating Gaussian random fields
    Marques, Isa
    Kneib, Thomas
    Klein, Nadja
    ENVIRONMETRICS, 2022, 33 (05)
  • [45] On Information About Covariance Parameters in Gaussian Matérn Random Fields
    Victor De Oliveira
    Zifei Han
    Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 690 - 712
  • [46] Simulation of conditional non-Gaussian random fields with directional asymmetry
    Horning, Sebastian
    Bardossy, Andras
    SPATIAL STATISTICS, 2025, 65
  • [47] ON THE CONDITIONAL DISTRIBUTIONS AND THE EFFICIENT SIMULATIONS OF EXPONENTIAL INTEGRALS OF GAUSSIAN RANDOM FIELDS
    Liu, Jingchen
    Xu, Gongjun
    ANNALS OF APPLIED PROBABILITY, 2014, 24 (04) : 1691 - 1738
  • [48] Efficient likelihood computations for some multivariate Gaussian Markov random fields
    Ippoliti, L.
    Martin, R. J.
    Romagnoli, L.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 168 : 185 - 200
  • [49] FULLY BAYESIAN FIELD SLAM USING GAUSSIAN MARKOV RANDOM FIELDS
    Do, Huan N.
    Jadaliha, Mahdi
    Temel, Mehmet
    Choi, Jongeun
    ASIAN JOURNAL OF CONTROL, 2016, 18 (04) : 1175 - 1188
  • [50] The moduli of non-differentiability for Gaussian random fields with stationary increments
    Wang, Wensheng
    Su, Zhonggen
    Xiao, Yimin
    BERNOULLI, 2020, 26 (02) : 1410 - 1430