Calibrated prediction regions for Gaussian random fields

被引:0
作者
Lagazio, Corrado [1 ]
Vidoni, Paolo [2 ]
机构
[1] Univ Genoa, Dept Econ & Business Studies, Via Vivaldi 5, I-16126 Genoa, Italy
[2] Univ Udine, Dept Econ & Stat, Via Tomadini 30-A, I-33100 Udine, Italy
关键词
air quality; bootstrap calibration; coverage probability; estimative prediction region; highest prediction density region; spatial prediction; DISTRIBUTIONS; MODELS; LIMITS; GEOSTATISTICS; INTERVALS;
D O I
10.1002/env.2495
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper proposes a method to construct well-calibrated frequentist prediction regions, with particular regard to the highest prediction density regions, which may be useful for multivariate spatial prediction. We consider, in particular, Gaussian random fields, and using a calibrating procedure we effectively improve the estimative prediction regions, because the coverage probability turns out to be closer to the target nominal value. Whenever a closed-form expression for the well-calibrated prediction region is not available, we may specify a simple bootstrap-based estimator. Particular attention is dedicated to the associated, improved predictive distribution function, which can be usefully considered for identifying spatial locations with extreme or unusual observations. A simulation study is proposed in order to compare empirically the calibrated predictive regions with the estimative ones. The proposed method is then applied to the global model assessment of a deterministic model for the prediction of PM10 levels using data from a network of air quality monitoring stations.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Prediction intervals for integrals of Gaussian random fields
    De Oliveira, Victor
    Kone, Bazoumana
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 83 : 37 - 51
  • [2] A note about calibrated prediction regions and distributions
    Fonseca, Giovanni
    Giummole, Federica
    Vidoni, Paolo
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (09) : 2726 - 2734
  • [3] Bayesian prediction of clipped Gaussian random fields
    De Oliveira, V
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2000, 34 (03) : 299 - 314
  • [4] Bayesian prediction of transformed Gaussian random fields
    De Oliveira, V
    Kedem, B
    Short, DA
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) : 1422 - 1433
  • [5] Approximate reference priors for Gaussian random fields
    De Oliveira, Victor
    Han, Zifei
    SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (01) : 296 - 326
  • [6] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2009, 3 (01) : 63 - 79
  • [8] Multilevel approximation of Gaussian random fields: Covariance compression, estimation, and spatial prediction
    Harbrecht, Helmut
    Herrmann, Lukas
    Kirchner, Kristin
    Schwab, Christoph
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (05)
  • [9] Covariance tapering for multivariate Gaussian random fields estimation
    Bevilacqua, M.
    Fasso, A.
    Gaetan, C.
    Porcu, E.
    Velandia, D.
    STATISTICAL METHODS AND APPLICATIONS, 2016, 25 (01) : 21 - 37
  • [10] Skew-Gaussian random fields
    Rimstad, Kjartan
    Omre, Henning
    SPATIAL STATISTICS, 2014, 10 : 43 - 62